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FOREWORD

This publication includes the individual papers of Damping 86 held
5-7 March 1986 in Las Vegas NV. The Workshop was sponsored by the Flight
Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Structures

4 k and Dynamics Division, Advanced Metallic Structures, Advanced Development
Program Office (AFWAL/FIBAA).

It is desired to transfer vibration damping technology in a timely
manner within the aerospace community thereby stimulating research,
development, and applications.
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KEYNOTE ADDRESS

"THE DEPARTMENT OF DEFENSE SCIENCE AND TECHNOLOGY
PROGRAM IN SPACECRAFT MATERIALS AND STRUCTURES"

By

Jerome Persh

Staff Specialist for Materials and Structures
Office of the Under Secretary Defense

Research and Engineering
Research and Advanced Technology

Military Systems Technology
The Pentagon, Washington DC

Good morning ladies and gentlemen. I am delighted to be here at this
"Vibration Damping Workshop II" and share with you some of my thoughts on
this very important technology area.

In this presentation, rather than dealing with vibration damping in a
technical sense, I plan to interpret the expression more in a broad sense.
The technical presentations that will be given during your meeting provide
a true snapshot of where the U.S. stands technologically in this essential
area and there is little that I could contribute to the information the
fine speakers are presenting here at this workshop. Therefore, rather than
risking the danger of technical involvement, my intuition tells me to stay
clear,

But first before getting into the subject of this workshop let me tell
you briefly how the Department of Defense is structured and where this
technology area fits into the overall scheme of things. My first illus-
tration (Chart 1) displays an overall organization of the DOD with the
group that I work in highlighted. This highlighted box is further expanded
on Charts 2 and 3.

The responsibilities of the Military Systems Technology Office are
shown on Chart 4. The overall mission of the Research and Advanced Tech-
nology Office is displayed on Chart 5 and its in-house laboratory coverage
is displayed on Chart 6. The proposed fiscal year 1987 budget for the R&AT
organization is shown on Chart 7. For those not familiar with DOD funding
categories, I have included Chart 8 which shows the breakdown of DOD budget
categories.

t Of the total R&AT Science and Technology Program I showed on Chart 7,
that allocated to the materials and structures area is displayed on Chart
9. With this funding, our responsibilities covers practically every
mission area of the DOD as shown on Chart 10. It is to be noted that the
subject of this workshop impacts the spacecraft mission area principally
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although wark is on-going in other mission areas as well, As such, it is
distributed throughout the overall program but the spacecraft area has
maximum visibflity. Of the total materials and structures budget shown on
Chart 9, it would be extremly difficult to isolate those dollars allocated
to vibration damping, although it is known that work is continuallyUon-going. It should also be noted that work on metal-matrix composites is
underway in practically all of the mission areas.

To complete the overall picture, let me outline in very broad terms
where I see the Department of Defense Materials and Structures Science and
Technology Program is going. (Chart 11) Certainly the overall philo-
sophical direction is towards more and more technical soohistication. The
"handwriting was on the wall" when we started our Rapi-Solidiflcation
Technology (RST) program in 1980. We were then dealing with micron size
powder particles, now we are headed towards sub-micron particles. We are
involved in the exciting areas of sol-gel processing and organometallic
synthesis.

Processing science is another important area of research. That is the
understanding of the effect of processing variables on the generation and
developwent of property-controlling microstructures of constituent
materials. This can only lead to the development of unique structures and
properties precisely tailored tle needs.

The materials development direction is clearly towards composites.

Not only are the fiber reinforced organic, metal, ceramic and ca-rbnaceous
matrix composites being developed, but also those in which the reinforce-ment is produced sipultaneously with the matrix. Key research areas

include the fiber interface regions and mechanisms and concepts to achieve
prec,:ely the structural properties desired.

The final general direction in which we are headed is toward
demonstration. We have found that it is unsatisfactory to stop our work
with a new materials development. It has to be demonstrated on a struc-
tural or functional component that closely simulates the final use to which
it is intended to be put. I am sure you have noticed that over the past
number of years more and more sub-scale and full scale components are being
subjected to real environmental testing and followed up with detailed
analysis leading to understanding of the results. It is this procedure
that leads to accurate performance predictions in systems use. Before we
consider we have finished our job these things must be done. This is a
fundamental change in the overall character of our programs that has taken
place over the past ten or fifteen years.

Along with each of th.ese dirstions we haye found that it is insuf-

ficient to carry any new materials and structures development through
demonstration without the establishment of a knowledgeable government,
industry, and academia "team". This is why you see so many of our "thrust"
programs in discrete technological areas. If new developments are to be

Z•. used for advanced military hardware, we have to show that it does .hat we
say it will do, and have the "team" in place to provide the expertise to do
the explaining. This is definitely a consequence of thB ever Increasing
sophistication. Whether this is "good" or "bad" is another question. It
is just the way it is now.

K .:A-2
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Now that I have placed in perspective just where this technology area
fits in the overall DOD scheme of things, I would like to discuss just
where the subject of this workshop fits into the picture. As I said at the
outset I do not plan on getting into the technical aspects because you are
much more qualified to discuss these matters and will have ample oppor-tunity during the course of this workshop.

Now, recalling Chart 9 which showed an overall breakout of the Science
and Technology (S&T) funding for materials and structures, I have plotted
the overall dollars against fiscal years on the next chart (Chart 12) and~indicated that portion of the overall devoted to composite materials. Also

indicated on this chart is an estimate of how much of the total program has
been dedicated to the space mission of the Navy and Air Force. It is
obvious that this represents only a very small fraction of the total
effort. Then along carme the Strategic Defense Initiative (SDI) whose
inv,!stment in related S&T far overwhelms our investment. This is indicated
on the overlay on Chart 12. Of course what I am showing here are overall
totals for the related S&T work. It is not possible to break out the
funding allocation for vibration damping but you can imagine chat it must
be a very small number compared to the total. My next chart (Chart 13)
shows a display of the broad categories of spece S&T work for both our S&T
program and the SDI. I have indicated on the overlay to this chart, those
areas where efforts in the S&T program complement and feed basic generic
technology to the SDI program.

Now to get to the subject of damping in space.
I have to start this discussion by stating flatly that the military is

ever increasing its dependence on space assets for both tactical and
strategic warfare situations. Because of this growing dependence there is
a demand for vastly increased capability which leads to greater complexity
and in turn requires attention to all of the detailed aspects of a space
vehicle. Tis is easily illustrated by considering potential requirements
that future spacecraft will have to be moved or pointed in different
directions to accomplish certain missions. Moreover, survivability in
hostile environments is also becoming a more important factor in spacecraft
design. This requirement my also mean movement of the spacecraft. Since
the spacecraft may not be able to perform its information acquisition or
transmission function while it is moving, it is an obvious requirement that
loss of operational time be as short as possible. What these thoughts add
up to is that greater and greater consideration must be given to the
intrinsic materials properties and dynamic behavior of structural systems
than has been done in the past when the structure was only a support system
for the sophisticated sensors. In the past spacecraft designers generally
paid attention to the dynamic behavior of the spacecraft structure only
after the materials were selected. Therefore spacecraft control has
depended on use of complex active systems. Now I believe that it is
essential for the future to factor in the fundamentals of the behavior of
spacecraft materials and structures before the spacecraft is designed.
This means that a great deal of very sophisticated technology must be
developed if we are to be able to fulfill the missions that are confronting
US.'
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As i indicated, it is only loqical that if one wishes to move a
spacecraft to either fulfill a sensor mission or avoid some hostile action,the need to start and stop its m tlon in minimum time is extremely impor-at. It is unreasonable to assume that this can always be accomplished
totally passively,

Some sort of active damping will certainly have to be used for many*: :missions, but one would hope that as much a- possible can be done passively
to decrease complexity and weight as well as increasing overall spacecraft
reliability, To date there has been minimal effort to understand the role
of materials and structures on spacecraft damping. But for the future,
damping may have the same degree of importance in spacecraft structures as
Zimensional stability and specific stiffness. (Chart 14). Optimization of
materials and structures for passive damping will require a great deal of
technological understanding which we do not now have. We certainly can get
more payoff from the materials.

Let me briefly discuss some of the conflicting needs that must be
considered. Probably one of the most important is joints in space struc-
tures. On one hand there is a need for extreme dimensional accuracy and
stability which translates to very tight joints. This means that the
helpful damping we depended ipon in joints may not be ?vailable because of
this requirement.

The only way I know to address this problem is head-on. The tech-
nology to provide a detailed understanding of joint damping-including test
methods and techniques must be obtained. In a similar vein, the dynamics
of the interfacial region between the fiber and matrix in a composite,
whether metal, organic or carbonaceous must be known if one is to be able
to design passive damping into spacecraft. (Chart 15). There are numerous
other examples of unknown areas that have to be investigated.

One thing we do know. The lighter the structure, the easier it is to
move it and stop it from moving. This fact leads naturally to the use of
composites, which by their very nature are much more difficult to under-
stand than homogeneous materials. But it has to be done. Here again an
example will illustrate the point. Consider a metal-matrix composite
utilizing magnesium as the matrix reinforced with very high modulus pitch
(graphite) fibers. It is relatively easy to visualize that the greater thestiffness of the fibers, the fewer of them will be needed to achieve equal

stiffnesses. Since the weight (density) of graphite is greater than
magnesium, it is obvious that the direction to go is to the highest stiff-
ness fiber available to provide for the lightest weight structure. (Chart
16). And this naturally translates back to the requirements for damping
the system in the shortest time with the minimum of complexity. Much work
remains to be done in this area.

Clearly, what I have attempted to illustrate is that if we are to
fulfill our future spacecraft mission requirements with the most efficient
structures, we must have basic understanding of intrinsic materials related
factors and their dynamic behavior when fabricated into structures. One
has to very seriously consider all of the aspects of the total system.
There is a great deal of technology yet to be developed. I feel certain
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that we can develop this technological understanding, but it will take time
and much work.

While I am sure that this audience has a deep appreciation of the
magnitude and difficulty of the effort that needs to be done, I am uncer-
tain as to whether the spacecraft development and procurement communities
understand. There will have to be some fundamental and conceptual changes

*4 in the way we do business in this arena because as I indicated earlier, the
allocation of funding for spacecraft in the overall materials and struc-
tures S&T program is minimal at best. The other traditional mission
responsibilities of the military departments must be dealt with in priority
order. This means that a much greater responsibility for fundamental
spacecraft technology must be assumed by the project officers. There is
just no way that the S&T program is going to develop the needed under-standing in a time frame required for such programs as the strategic

defense initiative. We can help, but certainly not provide a package of
the needed technology. Recognition of this reality must be taken into
account in future program planning.

In closing, I have tried to give a broad picture of the challenges
facing this community and the directions I see the Department of Defense
Materials and Structures Program going in. I am confident that we will do
what we have to do in the years to come. This workshop is one of the
essential steps to getting us there.
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STANDARD GRAPHICAL PRESENTATION OF COMPLEX MODULUS

AND DATA PROCESSING METHODOLOGY

Lynn Rogers and James Eichenlaub

AFWAL/FIBA
Wright-Patterson Air Force Base

and

Jeffrey B. Layton
Purdue University

ABSTRACT

Present practice for data processing, storing, retrieving,
and transmitting damping material complex modulus is summarized.Appendix A is a reasonably mature draft standard for the graphi-

cal presentation of complex modulus data. Appendix B proposes a
procedure for obtaining an initial estimate for the temperature
shift function for a set of data, especially useful when the range
of experimental frequency is marginal. The flow of data process-
ing is described and individual steps are presented in some
detail.

INTRODUCTION

A key to the advancement and implementation of damping tech-
nology is accurate and efficient data processing, modeling, pres-
entation, dissemina *, storage, retrieval, and utilization for
vibration damping or viscoelastic materials (VEM). The graphical
presentation of complex modulus data is useful as an interface
between the VEM supplier and user (designer or analyst) as well as
other purposes; Appendix A is a reasonably mature draft of a pro-
posed standard.

Finding the appropriate temperature shift function is central
4 to all handling of complex modulus data; Appendix B makes a case

for considering the slope of the temperature shift function. It
also presents some relevant mathematical relationships.

The present paper gives a procedure to obtain an estimate for
the temperature shift function and estimated parameter values for
the particular equation used to analytically represent the complex
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modulus. Obviously, once initial estimates are obtained, improve-
ments may be made iteratively either by qualitative judgement or
by some regression technique.

BASIC EQUATION

The utilityf and economy of fractional calculus for complex
modulus representation was developed by Bagley (1], while the use
of Bode diagrams (from control system methodology) and the current
notation were developed by the present author (2]. The simplest
equation of current interest is

G (Ge + GgZ)/(l Z) El

where

= (jr)" ; r fR'fRO E2

and

R f logf log f + log 'T E3

El is shown in P-B4 for typical values. Many damping materials
have this general character. El is the basis for the initial
approximation to the temperature shift function and is the initial
analytical fit to the complex modulus. Iterations and refinements
may be necessary.

It may be shown that the maximum loss factor from El is

=Imax (1 - 1/A) tan Wi/2 A G Gn/Ge E4

1 + 1/A + 2AI/ 2 cos C/2

QUALITY CHECK

Some indication of quality of the set of complex modulus data
is given by a plot of log loss factor (i.e., tan 6) vs. log modu-
lus magnitude, e.g. F-1, which is analogous to the Nichols plot
used in control system methodology. From F-Al estimates of Get

-- 2
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G., and 'Imax are obtained, and 8 estimated using E4. This is
typically an excellent estimate for 8.

Other estimates for Go and 1 may be obtained by considering
.. the projected rubbery intercept on a Cole-Cole (3] diagram (linear

imaginary modulus vs. linear real modulus), e.g. Fl. The curve in
the rubbery region is given by imaginary and real components of El
over the range

0.01 (Ge/G 0/0 < r < e00 (Ge/Gg) 1/0 E5

Q-ite often El does not fit data in the glassy region; an improved

model is (4]

G -G e
G = Ge + e E6

1 + a (jr)a + (jr)a

An estimate for AI (not to be confused with qxT) and another esti-
mate for G may be obtained from consideration of the projected
glassy intercept in Fl. This region is given by E6 with

* 0.01 < r < 100 E7

i TEMPERATURE SHIFT FUNCTION

The presently favored expression for the temperature shift
function is

log q T = a(l/T - lITz ) + 2.3(2a/Tz - b)log T/Tz

+ (bIT2 - alT - SAz)(T - Tz ) E8

which is based on fitting its slope through the three points (see
Appendix B)

a-'C ~ (SAT,TZ) ; (SARTH) ; (SAGTL) E9

The log loss factor vs. temperature, e.g. F2, is plotted. T is
the lowest experimental temperature rounded down to the nearest

-' Atemperature in degrees Kelvin divisible by 10, T1 is the highest
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experimental temperature rounded up, and Tz is selected between
TL and Til, hopefully at the maximum experimental loss factor, and
rounded to the nearest 50K. If the experimental temperature range
covers the transition, TL, Tz and TH should represent the glassy,
transition, and rubbery regions respectively.

The imaginary component from El is

GI =(G - Ge)(sin 90 N r /(I + 2 cos 90 Or 6 + r 2 }  El0

or approximately

G - (Gg - Ge )sin 900r ; r < 0.01 Ell

from which

log GI  log(G - Ge)sin 900 + B log r ; r < 0.01 E12

It may be seen that El2 is the straight line portion in F-B4.

Solving Ell for r, and making substitutions E2 and E3 yields

"T(Ti) 1 / GI4  1/0
f (Tg =G70 E13

fRO T f (Gg - Ge) sin 90El

The initial estimate for the UT curve in the transition and
rubbery regions is that which shifts individual points horizon-
tally to fall on the straight line portion of E12. The results
from E13 are plotted in F3 for a set of data. Obviously, a judge-
ment must be made to select a temperature below which points are
not considered. Since from EB, cTis unity at Tz, the reciprocal
of fRO is indicated at Tz by the points in F3. Values for SAT and
SAR in E8 are selected to fit the remaining points. Initially the
apparent activation energy is taken as a constant (see Appendix B)
at TL presumed to be in the glassy region.

COMPLEX MODULUS

At this juncture, the experimental points GR, G, and n should
be plotted vs. fR, e.g. F-A3a, and examined. Assuming low scatter
data and that the material is thermorheologically simple, the data

-~ AA-4



Ur C

points will define low scatter curves in the rubbery region
depending on SAR, in the transition region depending on SAT, and
in the glassy region depending on SAG- One attractive feature of
E8 is that these regions are uncoupled. The aT is now established
for the particular set of data. If the range of experimental fre-
quency is less than 3 decades, the choice of aT depends on satis-
fying the analytical representation of complex modulus.

Estimated values for all parameters in the analytical repre-
sentation of complex modulus, E6, have been obtained except for
a,; a good initial estimate is

1.0 < a, < 2.5 E3.4

Paramneter values can now be adjusted on the basis of interactive
graphics and operator qualitative judgement or on the basis of
some regression analysis with possibly some values held fixed.

Future work will no doubt lead to an equation which will be

an improvement to E6.

DISCUSSION

Ultimately, the application, which may be unsophisticated and
have limited objectives, pays for the complex modulus data.
Therefore the transition may not be well defined, and experimental
ranges of temperature and frequency may be limited. This situa-
tion often clouds the data analysis and processing. Regardless,
existing data may be useful, perhaps only for material screening.

This paper is possibly the beginning of a standard for defin-
ing the temperature shift for a set of data when the experimental
frequency range is marginal or inadequate. Crucial to this pro-
cedure is selection of an appropriate complex-valued analytical
representation of complex modulus; and improvements are needed in
the form of the equation.

When data fully defines the rubbery, transition, and glassy

regions with 3 or more decades of experimental frequency, these
procedures will not be needed. Meanwhile, the standard cautions
against extrapolating in frequency and temperature must be
observed.
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CXSTD REV 88$05-1102

GRAPIIICAL PRESENTATION OF DAMPING MATERIAL COMPLEX MODULUS

Proposed Standard

ASA $2- 73

ISO/TCI081C C13

Dr Lynn Rogiri
AFWAL/FIBA

Are* B - Building 45 - Room 25T
Wright-Patterson AFB 011 45433-655: USA

(513) 25.37.S'+

1. INTRODUCTION
Damping is one potential approach to reducing vibration ievel, in a structural system. D~mping k the

dissipation or vibratory energy by converting it into heat, as distinguished from transporting it to another
part of the system When the damping is due to internal energy dissipation within a material which is
part of the structural system, and when the damping is of engineering significance, the material is called a
vibration damping mattri,|, The energy dissipstion is due to the .tress-strain hysttrii loop of the vibration
damping material. Other posible sources of damping, such s plastic deformations in the jointv, relative
slip at joints, air pumping In the joints, acousti. radiation or energy, eddy current lossel, etc., are not due
to the material and are not covered in the present document.

2. SCOPE
The preferred nomenclature (parameters, symbols and definitiont) and graphical presentation of the

complex modulus of viscoelastic vibration damping materisls which are macroscopically homogenous, liner
and thermorheologically simple are given; the complex modulus may be Young's modulus, bulk modulus,

longitudinal wave propagation modulus, or Lami modulus. This graphical presentation is convenient and
suflciently accurate for many vibration damping materials.

The primary purpose is to improve communication among the diverse technological fields concerned
with vibration damping materials.

3. RELATED DOCUMENTS
ISO, 1 7 - 1978 Quantities, Units, Symbols, Conversion Factors and Conversion Tables (ISO TC 12)
ISO 2041 - 1980 Shock and Vibration Vocabulary (ISO TC 108)
ISO 2850 - 1981 Elastomners - General Requirements for Dynamic Testing (ISO TC 45)
ISO/TR 4137- 1078 Plastics - Determination of Modulus of Elasticity by Alternating Flexure (ISO TC 61)
ISO 472/DAD 8 (1984) Plastics-Vocubulary-Damping Terminology (ISO TC 61)

4. TERMS AND DEFINITIONS
4.1 COMPLEX MODULUS
The operator form of the constitutive equation for the linear. i.othermal, isotropic, macroscopically

homogenous, thermorheologically simple (defined after E7) viscoelastic material being deformed in shear is
Ref. 1'

P(pRrf) = Q(P-h(') (EJ)

AA-AI
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where r(t) is the shear stress, -1(t) is the strain, P(pA,) and Q(PA,) are Polynomials in pm, the operator defined
as

P. (E2)

whre the reduced time is
(j /rar(T) (E3)

where I is time and ar(T) is the temperature shift function dependent on temptrature,TRkef.21. The fourier
transform (U~.) of El leads to the definition of the complex shear modulus valid for stetady state sinusoidal
stress and strain

OGji.J) - r*(iJA.I)/'(iWA) -QUWA)/P(iWA) (E4)

where r*(jI.A) denotes the f.t. of r(t) and the reduced radian frequency i~s

WA- wayr(T) m2xf,,= 2Xlcar(T) (ES)

which is a product of '., the radian frequency in radians/sec and the dimensionless temperature shift function,
while /. and f are in Hit.

The complex shear modulus
G-Gj.)- G(jciar(T)) (EG)

is dependent on both temperature and frequency

Cm C(W,T) (7

in a very specific way, ie.,EG applies; a material obeying E6 is called thermorheologically simpit(TRS).
Further, the above equations apply only to linear conditions.

Alternatively, this case may be considered as starting with a viscoelastic material element undergoing
a sinusoidal shear straini~ltf. 3j

1 =~tw (ES)

which lags the sinusoidal shear stress

by phase angle 6a. Thi sinusoidal strain and stress may be represented in complex notation as

and the complex shear mnod u Ius,G,tquivalently deGned

G = -*/-I = VAeCO-j GMSeiO = G,,C016.(1 + itan4o) = G,, + jO, =Gt(l + iTh.) (E12)

where

G,,, is the magnitude of the shear modulus,
G0 , is the real (storage) modulus,

G,=G1Cis the imaginary (loss) modulus, and
v = fan6a is the material loss factor in shear.

Similar developments apply to the Young's inodulus,E, to the bulk modulus, K, to the longitudinalI wave propagation modulus,W, and to the Lami modulus,A.
A thermorheologically simple material is a material for which the complex modulus is a complex valued

function of one independent varia~ble, namely reduced frequency; reduced frequency in turn is a function
of fre.tiency and temper?:, tir. (In th,- P .-i ' i ren' modulus and the material loss factor sometimes have
been treated as independiet functions o.f redui td frequency; while this has facilitated sorn satisfactory
applications, it is a conceptual error.) The complex modulus evaluated at a given temperature and a given
frequency represents both the magnitude and the phase relationships between sinusoidal stress and strain.

AA-A2
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4.2 DATA CHECK
This document presumes thaz a set of valid complex modulus data (e,g., TI) has been obtained in

accordance with good practkele.g., Ref.41. It is recommended that each set of data be routinely and carefully
#crutinised. As a minimum, the log '%. vs log C,, e.g. F1, should be plotted. If the set of data represents
a thermorheologically simple material, if a "vertkal shift is not appropriate and If it has no scatterit will
plot as a curve of vanishing width. A temperature value and a frequency value together lead to a reduced
frequency valae, which corrsponds to a unique location along the arc of the curve; however, this is not
considered in this plot. The ;naterial loss factor and the modulus magnitude are cross-plotted, and the
reduced frequency, temperature, and frequency parametevs do not occur explicitly. No part of any scatter
in this plot can be attributed to an impt-efect temperature shift function.

The log lots factor vs log modulus magnitude plot can reveal valuale information regarding scatter of
the experimental data. The width of the band of data as well as the departure of individual points from
the center of the band are indicative of scatter. Acceptable scatter depends on the application. Nothing is
revealed about the accuracy of the temptrature and frequency messurements.

4.3 TEMPERATURE SHIFT FUNCTION
The set of complex modulus data itselfimplicitydelins the temperature shift function, ar(T), provided

the experimental ranges of temperature and frequency are adequate. It is assumed that a single temperature
shift functioliis adequate.

Because the temperature shift function,o(T), has historically had a central role, because its slope,
d(tor)/4T, is the-crucial feature that causes data to be correctly shifted, and because the apparent
activation energy R ef. 2 1 A M A = 2. 33R T U 0 0#001)I T ( E 1)

where the gas constant is

R - 0.00828 iCte.on * km/gram - mole depK (E14)

is of interest, it ;. icommended that these three functions be plotted.e.g.,F2a.

4.4 GRAPHICAL PRESENTATION
A set of complex modulus data is presented in F3a using the recommended format. The left vertical

logarithmic scale axis is provided for the real and the imaginary modulus components in megaPascal (MPA)
units and for the dimensionless loss factor. The horisontal logarithmic scale axis is reduced cyclic frequency,
lo. in lit. Th. reduced frequency for the I-Ah experimental point is given by

1., = (OA(T( (E15)

where f, is the experimental frequency and Tj is the experimental temperature.

4.4.1 JONES TEMPERATURE LINES
In Fa the right hand side (RlS) vertical logarithmic scale is cyclic frequency in liz. The nonuniformly

spaced diagonal isotherm lines together with the horizontal reduced frequency axis end the RIIS vertical
frequency axis provide a temperature. frequency-reduced frequency nomogramnRef. 5). Taking the logarithm
of E5 gives

logyh = log + logor(T) (E16)

i. arh is the equation for a straight line on FSa. Values of temperature in degrees Kelvin divisible by 10
(alternatively, 5, 20 or any other convenient integer) are chosen. The set of isotherm lines implicitly defines
the temperature shift function used. The range of the diagonal isotherm lines should be chosen to be the
same as the experimental temperature range of data to preclude unintentional and possibly highly erroneous
extrapolation. Similarily, the RIIS frequency scale should include only the decades of experimental frequency

To follow the illustration included in F3a, enter at a frequency of 200 Hz and proceed horizontally to
the intersection with the diagonal line representing 280 degK; the intersection defines a reduced frequency

AA-A3



of 12000 )It; where this vertical rtdced frequency line crosses the curvts, a real compon!,t or 1n. MPA.
on imaglna:y component or 118. SMPA, and a lost factor or 0.854 ar read on the jtl' scale.

4.5 ANALYTICAL REPRESENTATION
While manual processing and interprttation are adequate for some purposes, coniputerhiation offers

considerable efficiency. Furthermore, analytical representation or the tempcrature shirt function and or the
€utnpilex m.odulus provides increased efficiency for design studies. If available, analytical reprefent taons
sh%.ul be given, eg,, F2b and F3b In the event analytical representation is used in design, care must be
ua).en to not extrapoibte inadvertently.

4.6 REFERMNCES
1. L Rogers, 'Opzf-tors and Fractional Dtriw#tives for Viscoetlasic Constitutive Equations," J.Rhcology,

27(4). 351-372 (1983).
2. J.I).Ferry, Viscoclaoic I'ropcrtiu-j of PoIymcri, 3rd td, Wiley,1980.
3. A.D. Nuhi(, D.IG. Jones, and J.P.iderson, Mration Dampt'ng, Wiley, 1985.
4. Standard Method for Measuring VibrAtion-Damping Properties or Matrials, American Society for

Testing and Mattrials, ASTNI E 7W.83,1983.
5. D.I.C.Jones, "A Reduced Temperature Nomogram for Characttrihation or Damping Material Behav.

ior", Shock and Vibration Bulletn, 48(2), pp13-22, 1978.
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T1 COMPLEX MODULUS DATA

T Go, C I T I CA C
DoC K Ht MPA NIPA Deg K Ht IPA NIPA
3404 95.91 4.s98 2.002 .4551 261.5 3.7 637.6 147.0 .2305
340 4 267.2 4.264 3.073 .9318 249.3 214.7 976.0 130.8 .1340
3414 522,9 6,567 4,591 M8991 249.3 617.9 1053. 122.6 .1153
340 4 503 1 9.340 71705 .6312 24.3 121M 1068. 119.9 .1123
340.4 1273, 10,44 1141 1.093 2365 252.1 1438. 84.27 .0586
3404 1791 10.70 12.20 1.134 230.5 718.9 1518. 102.9 .0679
3254 90,68 7.02 4.042 .5700 230.5 1388. 1470. 87.91 .0598
3254 269.4 0.990 5.832 .8344 224.8 276.0 1772. 92.32 .0521
323:4 525.0 7.254 8.320 1.147 224.8 770.5 1788. 82.58 .0350
325,4 870.8 12,47 10.60 .8546 224.8 1481. 1713. 57.21 .0334
325.4 1291. 15.90 14.58 .9157 218.2 778.5 1830. 47.40 .0259
318.5 00-41 4.924 4,019 .8103 218.2 1497. 1726. 46.95 .0272
316.5 271.0 9.241 7.340 .7943 295.4 5,930 4,915 3.494 .7108
316,5 535.9 14.99 15.05 1,004 2954 77.74 23.19 22.15 .9551
310.5 673.1 13.04 15.19 1.165 295.4 154.3 32 3' 2R 74 .9167
316.5 1305. 20.73 17.77 8571 295.4 260.3 59.28 44.69 .7538
316.5 1830. 19.40 51.12 1,004 295.4 385.0 54.31 45.48 .8374
305.9 97.37 9.077 10.19 1.123 295.4 545.2 62.26 46.94 .7539
305.9 274,0 13.92 18,57 1.334 295.4 5.920 4,458 5.354 11201
305.0 540.1 20,01 24.79 1.239 295,4 28.08 11.53 13.80 1,197
305.9 903.5 29.88 34.57 1.157 295.4 78.20 25.02 25.17 1.006
305.9 1886. 34.23 30.92 .9033 295.4 155.2 33.34 33.44 1,003
295.4 100.0 25.07 25.32 1.010 295.4 260.4 59.48 51.90 .8725
295.4 289.8 43.67 39.55 .9053 295.4 387.4 56.64 45.63 .8057
295.4 504.7 43.51 65.22 1.499 29to.4 540.4 63.13 42.01 .6655
295.4 929.0 44.29 70.24 1.588 293.7 27.88 9.512 14.42 1.516
283.7 110.1 7700 84.49 .8375 293.7 78.64 26.78 22.59 .8437
283.7 331.8 132,4 99.79 .7537 293.7 155.8 34.01 32.89 .9503
273.2 119.6 134.3 109.2 .8134 293.7 260.2 59.19 41.01 .6929
273.2 398.7 299.5 157.1 .5240 29.7 392.6 61.73 50.52 .8184
201,5 171.5 534.0 145.8 .2730 293.7 540.8 63.42 57.74 .9105
201.5 505.5 030,2 159 9 .2537
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10 r2 O, 4 (IT T-I sT,}. 2,303 [2*,T, - 6)1o9 TIT,. (b!,17 - Tl - _.,,tT - T,)

-ditog Or),'W w . P7- I"lIT,} + bt(I T - I/T#), S

Slope thru the three points:

r,= -- (1) - 300.. Sx ,- A(4) -- 0.002

T&, =A(2).a 22o,, SA, - A(S) w .1 33
Too A(3 a}- 340., S . - .4(6) . 0.018

C. -- { IL - 1ITX}'
,C, ,- T IT - 11T,

CC S.L - SA.

DA, - tiT - liT.)'

D, . 1iT,- 11T,

De= fiD,. CA - C. DA

= (D, c - C. Dc)ID,
b = (CA Dc - D.ACc)ID.

F2b Analytical Representation of the Temperature Shift F'unction

F+,C

1!

'I..

- G4 =- CT1  2.C/5O5,(',,gT"T1 - (fj-a/T -S)(T-T-

C. =B(O' 1.8

G, =B(2) =2130.
- =1 - B(3) = 0.22E(

(2 -= B(4) = 0.6

A( B (6) = 0. 16

F3b Analytical Representation of the Complex Modulus
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T=PERTURC SHIFT CONSIDERATIONS FOR DAMPING MATERIALS

Dr. Lynn Rogers
AFWAL/FIBAArea B - Bldg. 45 - Rm. 257

Wright-Patterson AF, OH 45433
(513) 255-3738 or -5664

Prasented at the 56th Shock and Vibration Symposium

October 1985

For the terpozatura shift function for a particular damping
material to be obtained, it must be implicitly defined by a sat
of complex modulus data. Historical procedures have ben marginal
because frequency ranges have not boon adequate. A new procedure
for such data is proposed based on the slope of the temperature
shift functlun, -.. a fractional model of complex modulus and on
apparent ac.ivation energy considerations.

;TRODUCTION and

For many viscoelastic damping 3 log G*/3 log f
materials, or at least as a first
approximation, the dynamic mechanical -(d log G*/d log fR)Ha log £R/3 log f)
properties are thermorheologically sim-
ple. In particular, the complex modulus -d lig G*/d log fR ES

will be needed.
GO au *( El-'(R)in the typical explanation of fre-

quency-temperature equivalence 1l), a
is a function of the reduced frequency temperature shift curve or function is

constructed for each particular set of
complex modulus data. The real part

fR = fOT E2 (R), the imaginary part (I), and the
material loss factor (u) of the complex
modulus data are plotted as a function

which is a product of the actual fre- of the reduced frequency. For conven-
quency and the well-known temperature ience, the expression for the tempera-shift function. It is often desirable ture shift function is usually taken to
to divide by a reference reduced fre- be unity at the reference temperature.

quency and use logarithmic scales With reference to El and E3, the effect
of a constant in the temperature shift
function, aT, is to shift the experi-

log(fR/fRO) - log f + log aT mental data horizontally, whereas the
effect of a reference reduced frequency

- log fRO E3 is to shift any analytical representa-
tion horizontally. Historically, the
aT for a particular damping material

Expressions for the partial derivatives has been defined empirically by the
experimental complex modulus data. The

a log G*/3T value of UT at each experimental temper-
ature is selected such that it simul-

- (d log C*/d log fR)(a log fR/3T) taneously shifts horizontally the three
complex modulus data points (R,I,n) to

- (d log G"/d log fR)(d log aT/dT) E4 define curves and minimize scatter.
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With usage of computers it is conven- whore
ient to fit the empirical aT curve with
a suitable analytical function.

Dy contrast to the historical 
SAZ E C1/C2  E7

focus on *To the present focus is on
its slope. Consider complex modulus Taking the derivative of E6b yields
data taken at the three temperatures,Tj , (T + l), and (TI - Alb). For2both the data taken at (T1 + Ala) to be - d(log aT)/dT N SA./(l + DT/C 2)

2

shifted to that at Tl, £6
Thee

shift (A - log 0T(T log *T(T The slope given by EG is normalized and
la T 1 plotted in Fl for representative values

+ tedt a of the parameter.

taken t CT1 ~lb ~ EXPONENTIA~L EQUATIONand the data taken at (T I + alb
| to be EPNNILEUTO

shifted Another expression is the exponen-

tial

shift (Alb) = log OT(T 1 + A lb )

- log oT(Tl) log OT  - - N log(1 + DT/Co);

T > TZ - cc E9

and from calculus approximations to
derivatives, it follows that which may be written

log .3T(T I + a la) log OT(Tl )
Ale log aT -2.3 CeS~z log(l + DT/Co)

E10

log OT(Tl) - log aT(T1 - flb )  where

a lb

d log 0 T SAZ N log e/Ce  Eli

,dT ITThe slope corresponding to the exponen-
T -T 1  tial is

The satisfactory horizontal shift of

complex modulus curve segments is - d(log eT)/dT - SAZ/(l + DT/C0 )
clearly dependent on the slope or El2
derivative of aT rather than the value

* of aT, and that the slope is also a and is plotted in F2.
* function of T.

WLF EQUATION ARRHENIUS EQUATION
The Arrhenius equation is written

A commonly used representation for in the form

the temperature shift function is the
ILF equation

log o T  - a2 RT  E13
log T  - - C1DT/(C2 + DT);

where
T > TZC 21 Dr - TTz E6a

which may be written RT  - 1000/T - 1000/Tz; T > 0 E14

log aT " SA.DT/(I + Dr/C 2 ) E6b and using

AA-B2
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2 Integrating the above reprosenta-
SAZ Z 1000 a2/T5 tion leads to

may be written log T M a(l/T-l/Tz) + 2.303(2a/TZ

log OT  * (SAZ T/1000)RT  E16 -b)log T/T Z * (b/Tz-a/T

-SAZ)'T-Tz) E22

from which
where the constant of integration has

+ DT/TZ)2 been chosen for convenience to make oT
T AZ unity (or log zero) at the reference

E17 temperature. The coefficients may be
evaluated by fitting the slope through

and this is plotted in Fl. Alternt- -the three points
tively E17 may be written

- d(log oT)/dT - SAzT2/T2 E18

SAZ TZ  E23a

APPARENT ACTIVATION ENERGY SAL TL  E23b

For some purposes, it is of inter- SAH TH  E23c
0st to display the apparent activation
Qnergy (2, p. 289, (44))

The form of the equation E21 inherently

2 satisfies E23a. Substituting E23b and
AlA - -2.303 R T d log OT/dT c results in

E19

where the gas constant is a(I/TLl/TZ 2 + b(l/TL'l/Tz)

+ SAZ 0 SAL E24a

R - 0.00828 Newton-kilometers/
gram.mole.*K a(l/TH_I/Tz) 2+ b(l/T1/TZ)

In general, the apparent activation is + SAZ A £l24b
a function of T. When E1, the slope
for the ArrhenLus equation, is substi- Letting
tuted into E19, we obtain

allA  2.303 R SA T 2 E20 C A 0 (1/T L - 1/TZ) 2 E25a

~A 2.0 AZZ
CB  - (1/TL - I/Tz) E25b

which is independent of temperature, the C U S - S E25c
standard result for the ArrhenLus form. C AL AZ

SLOPE QUADRATIC IN I/T DA w (1/TH - l/TZ)2  E26ea

This paper proposes tla represen- DB  - (1/T H - I/TZ) E26b

tation for the derivative or slope - SA -
5 AZ E26C

- d(log oT)/dT - a(l/T-1/Tz) 2  D 0 D C CBD E27DE  B DB A -B A  2

+ b(l/T-I/TZ) + SAZ E21

it follows that the coefficients are

as the most workable for many damping evaluated
materials.

a - (DBC -C cBDC)/DE E28a
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b w (CADC - DACC)/D£ E28b may be seon that the slopes as a func- I
tion of temperature, T, (rather than of
D ) can be caused to approximate each

If it happens that olher more closely by an appropriate
choice of TZ . These two curves are

2 defined by the exponential representa-
a M S Z TI b a 2 S AZ T Z E29 tion. The curves were determined

empirically, and the exponential equa-
tion and the parAmeter values are also

then this representation reduces to the empirical. The quadratic in 1/? is an
Arrhenius case. This is a major adequate approximation over some range
attraction. of D (probably sufficient for engineer-

ing nterost) because the curves are
The apparer-t activation energy for themselves approximations as noted

this case is fc-und by substituting E21 above.
into E19

T 2 DETEMINATIO4 OF THE TEMPERhTURE SHIFT
L11A a 0.001907 [l - + bT(l FUNCTION

- T + ST 2  E30 The temperature shift function is"Z implicitly defined by the set of com-
plex modulus data. Historically, the

SPECIFIC CURVES (3) function hos been found by shifting
data horizontally until curves were

Two specific curves used for vibra- defined and scatter minimized; where
tion damping materials were developed there is a marginal experimental fre-
empirically and the convenient exponen- quency range, this is not completely
tial equation (£9) was adapted. One satisfactory. It happens that there
curve was developed for use with poly- are theoretical relationships that may
mors and is designated "ADN" with the be used to determine the slope of OT
parameters from experimental data. The basis of

this procedure is the hypothesis that
the complex modulus as a function of

N - 11 reduced frequency is adequately approx-
imated in the range of interest by

Cc a 175.6064/1.8 = 97.5591 a 100.
S 0.0489676 a 0.05 G* , [Ga + (jr) B;

r - fP/fRO £33
The WLF equation approximates 

this

curve when
which contains fractional powers (4].
Note that as shown by F4, the slope of

C l/C2 0 9/175 • 0.0514 2 0.05 the magnitude, real and imaginary, in
the transition region is a constant.

C2 - 315/1.8 - 175. Decause the slope of the imaginary is
E31b also constant below the transition, it

is more convenient and is used. The

The "DIGJ" curve was developed for the imaginary component of E33 is

larger temperature ranges required by
enamels and is given by GI - sin 90(Gg - Ge)rB/ (I

N - 14 + 2cos90 ro + r2B)

c - 278/1.8 w 154.44 a 155.
S-037 0which in the range of interest is pro-SAZ portional to

Cl/C 2 - 12/291.7 - 0.04114 0.04
C 2 - 525/1.8 = 291.7 = 290. 1I r;r<00

E32
It follows that

The exponential slope E12 is com-
pared in F3 for the two sets of parame-
ter values given by E31 and E32. It

AA-B4
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log Gi B log fp, '1 ngxp

d log C /d log f a E This last equation indicates the valid-
ity of fitting a polynomial in tempera-

This resu).t may be substituted into the ture
imaginary part of E4 to give

. n'. Z CD T £39

0 ( log G /3T) a B(d log e.YdT) C35 kno k
..,.. and determnin n.,,=x and TZ and its 5

The desired slope is evaluated once th. tQmperature. Accurate representation

two quantities 3 log GI/3T and 0 are of properties in the transition is of
determined, interest because of possible engineer-

Ing applications in this region core-
The complex modulus (I.e., the quent y, the temperature of '1 is

real modulus, the imaginary modulus, chosen as the reference.
and their ratio or loss factor) depends p
on both temperature and frequency. The next ztap is to deternine 0.
Temperature is dominantl and the pros- The expmason for xay be devel-
ant context is that experimental fre- opod from E33
quency is marginal (at least to deter-
mine OT). It is necessary to adjust R - I/A] tan__ /2
experimental data for the effect of nmax a - l - f
frequency 1 + 1/A + 2^/ 2 cozv/2

GI(fexpiTexp) - G.I\(fATexp ) E36a A w Gg/Go E40

GR(fexpTexp) - GR1(fA,TaxP) E36b Numerically this equation may be solved

n(fT) a A 36c iteratively, and the parameter A may be
A exp IA/ h approximated from experimental data.

where fA is a frequency representative With 6 known the imaginary modulus
of a particular data set, e.g., a geo- may be adjusted using E38b and fitted
metric average of experimental frequen- to a polynomial
cies. In order to make these adjust- m
ments, E34 is substituted into E5 k T £4. log G1 - T E41 '

-, ~~~a log GR/ o ;
R/og 3 l f a B; and the slope

'. a log G,/3 log f - B

or approximately E37 3 log GI/aT w d log GIA/dT

N-1 k.-I ,k-10 Z k CAk T L

log G-log G S(log fk-log f k-l

T Z Tz E42

"N'..or
evaluated s a function of T or at spe-

)-8 E38a cific points ouch as TZ and at a higher
GRexp / XP)  temperature, TH!.4 ndsiilrl It follows that

GIA Goxp(fA/fex ) E38b SAZ ( log GIA/dT Tz

and therefore in the middle of the and
y., transition region
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, ,. .,;,,, .,,.: :.. .. .:. . , / .. . :. .'.. :.-. . . . . . . . ..,,,, - . . . . ., .. .,. ., .,

:_. ... ..,-. .";'.,.,:,.;.', -, .., ;. ,,. .. .. .. ,, "; ,,: ,, ,: .,.. ,,-,:- ,-:, -:, : ,,"-: '. . ,: .." ,. ..M.-,;,.. -_,B. -5- .,, .



SMI (d Gx/dT )/6 Z44 determining slope in only the glassy
lA T T region, or the transition, or the rub-

bery, may be determined while not
At this juncturl, two points affecting the othors.

(TaSAZ) and (Tlt,SAII) have been defined,
an a third relationship is required. Another very obvious advantaija is
It is supplied by hypothesizing that at representation of a nuch more geneoral
T, a temperature in the glassy region, type of slope curve than has boen pOS-
the apparent activation energy, is a oible in the pxot. Only experience
constant, o' the derivative with viscoelastic mtorials of interest

will determine general adequacy.

d,51A/dT 2a(T/TZ-I)/T? + b(I-2T/TZ) It is worthy of note that the rof-
ernce temperature has no physica1 sig-

+ 2TSAZ E45 n1ficance heara it should be considered
to be an empirical parameter which hap-
pens to have units of temperature.

is set equal to zero A TL RFERECES

S Ni+ - 2 TL/TZ) 1. Jones, D. 1. G., "Tomparature-Fro-
+ 2TLSAZ 0 E46 quency Dependence of Dynamic Prop-

ertios of Damping Materials,"
Journal of Sound and Vibration,This may be used as one of two equations Vol. 22, n. 4, 1974, pp 451-470.

2. Ferry, John D., Viscoelastic PXOp-
CA - 2 (TL/TZ - 1)/TZ E47a erties of Polymers, Joh-n Wily-and

CB a - 1 - 2TL/TZ  E47bs#Jda.190
3. Rogors, Lynn and Ahid D. tashif,

Cc  a - 2TLSAz E47c 'Computerized Processing and
Empirical Represontation of Visco-
elastic Material Property Data and

in lieu of £25. F5 characterizes a Preliminary Constrained Layer
temperature shift function obtained by Damping Treatmant Design," The
thi3 procedure. Shock and Vibration Bulletin, Vo.

40, September 1978, Part 2, pp 23-
37.

NON-MONOTONIC SLOPE
4. Rogers, Lynn, "Operators and rrac-It is possible to choose values for tional Derivatives for Viscoelastic

the WLF parameters SAZ, C2, and TZ in Constitutive Equations," J. Rheol-
ES to give specified values of slope at ogy, 27(4), pp 351-372 (1983).
three temperatures only if the slope is
monotonic as in Fl. The same conclu-
sion applies to the exponential param-
eters in E12 and F2. Some materials
passesi temperaturo shift curves with a
slope which has an upright "U" shape or
an inverted *U" shape. These functions
cannot be represented by conventional
expressions, but can be easily 'escribed
by the quadratic in I/T.

DISCUSSION

Very limited usage with experimen-
tal complex modulus data together with
engineering judgment suggests that the
quadratic in l/T as determined by the
slopes is accurate and efficient. The
greatest advantage is that the various

* temperature regions of data may be con-
sidered independently or in uncoupled
fashion. That is, the parameter a
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COMPARISON OF DAMPING MATERIAL PROPERTIES
BY VARIOUS TEST METHODS

Matthew F. Kluesener, P.E.
University of Dayton
Research Institute

Dayton, Ohio

ABSTRACT

Two viscoelastic damping materials, G.E. SMRD 10OF9OA and 3M ISD-112,
were evaluated using five different test methods or instruments. The
methods/instruments were the Resonant Beam Test, The DuPont Dynamic
Mechanical Analyzer (DMA), the Imass Autovibron, the Rheometrics Mechanicdl
Spectrometer (RMS), and the Stress Relaxation Test. All results are
compared to curves fit to the beam test data and are presented on the
reduced temperature nomogram. The beam test yielded results from the
glassy region into the rubbery region. The DMA gave results significantly
different from the other methods and does not give ?ny data in the rubbery
region. The Autovibron and RMS require two samples t, define the entire
modulus range and the results agreed with the other met..eds in various
regions. The Stress Relaxation Test defined data only in the rubbery
region and the high temperature end of the transition region and agreed
well with the other methods.
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INTRODUCTION

Two viscoelastic damping materials, General Electric's SMRD 10OF9OA
and 3M's ISD-112, were evaluated by five test methods and/or instruments.
The methods/instruments were the Resonant Beam Test (Beam Test), the DuPont
Dynamic Mechanical Analyzer (DMA), the Imass Autovibron, the Rheometrics
Mechanical Spectrometer (RMS), and the Stress Relaxation Test. At room
temperature, SMRD 10OF9OA is a moderately stiff, epoxy-like material and
ISD-112 is a very soft, self-adhesive material, thus providing a large
range of properties being determined.

In order t- show the differences in material properties determined by
the various methods, all data are compared to curves which are based
largely on the beam test data, with results from other test methods being
used to help define the rubbery region. All data are presented in metric
units on the reduced temperature nomogram using the Jonesl ax relationship.
The reference temperature To = 79°C, for SMRD 10OF9OA was selected by
considering the Autovibron and Beam test results; for ISD-112, To = 75°C,

was selected by considering the RMS and Beam Test results.

The DMA and Autovibron determine the complex Young's modulus. These
results were converted to shear modulus by assuming the Poisson's ratio to
be 0.5 which gives the relationship G = E/3.

The following paragraphs give a brief description of each test
method, discuss the error sources and limitations of each, and present the
results of the tests on SMRD 1OOF9OA and ISD-112.

RESONANT BEAM TEST

The resonant beam test technique forms the basis of ASTM standard
E756-83 for determining the vibration damping properties of materials. In
the resonant beam test, the viscoelastic material is applied to either the
outside surface(s) of the beam (Oberst configurations) or in between
matched beam pairs (symmetric sandwich configuration). The symmetric
sandwich configuration was used for the materials evaluated herein, and is
shown in Figure I along with the dimensions of the specimens. As its name I
suggests, data is taken only at the natural modes of vibration of the
built-u? structure. The test data is reduced using fourth order beam
theory.

The beam test, using the symmetric sandwich configuration is
applicable for materials with a Young's modulus of less than 1x10 8 Pa and
can be conducted over the temperature range from -73 to 232C.

Sources of error in the measured complex modulus can result from poor

specimen preparation, poorly matched beam pairs, and extraneous dampin hsources such as damping in the fixture. For the beam test, as with al? the

methods considered herein, errors in temperature measurement and control
are also sources of error. One of the largest sources of error, albiet
usually only near the rubbery region comes from an instability in the data
reduction equations which leads to magnification of the measurement errors.The error magnification factors have been determined for the free layer
beam test3 but not for the symmetric sandwich beam test.
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The main limitation of the Beam test is in the definition of the

rubbery modulus plateau. With the symmetric sandwich beam test it is
usually possible to define the high temperature end of the transition
region and the beginning of the rubbery plateau. Sometimes only a limited
amount of data in the transition region is obtainable, because the damped
beam specimens are so highly damped that the resonances are hard to excite,
and only one or two modes may be measurable instead of the usual 4 or 5
modes.

BEAM TEST

The results of the Beam Tests on SMRD 10OF9OA and ISD-112 are shown
in Figures 2 and 3 respectively. Almost the entire modulus range was
defined for both materials using a single pair of specimen beams. There is
considerable scatter in the loss factor data for SMRD 10OF9OA. The curves
which are fit to the Beam Test data points are used in the nomograms from
the other test methods that follow, in order to show difference in the
measured properties.

DUPONT DYNAMIC MECHANICAL ANALYZER

The mechanical portion of the DMA consists of two parallel balanced
sample support arms which are free to oscillate around flexure pivots. The
arms are connected to the sample forming a compound resonance system, the
resonant frequency of which is dependent almost entirely (because of the
low natural frequency of the arm-pivot system) on the configuration and
modulus of the sample. In os:illation, the sample is deformed via the
geometry shown in Figure 4.

The DMA is applicable to materials with a Young's modulus between
1.8E7 to 2E11 Pa and testing can be conducted from -120 to 450 0C. The
frequency range is generally 2 to 30 Hz and the samples are usually
rectangular.

Error sources in the DMA include thermal lag (caused by too thick of
a sample or sweeping temperature at faster than 20C per minute), improper
alignment of the sample and buckling of the sample. The manufacturer of
the DMA states that the precision of the modulus measurement is 5% in the
frequency range 5 to 30 Hz.

A major limitation of the DMA is that for the two materials tested,
and presumably for many other damping materials, the end of the transition
region and the beginning of the rubbery plateau is not defined because the
material becomes too soft. This results in only a few data points above
the temperature of peak damping. The limiting modulus value seems quite
clear, because the tests on SMRD 10OF90A and ISD-112 both stopped at a

Nshear modulus of approximately 6E6 Pa.

very Another limitation of the DMA test is that is is conducted over a
very limited frequency range (2 to 30 Hz), and at each temperature
measurement point, data at only one frequency is obtained. Therefore the
DMA data appears to be free of scatter; however, the absence of data
scatter should not be assumed to indicate accurate material data.
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The results for the two materials are shown in Figures 5 and 6 for
SMRD IOOF90A and ISD-112, respectively. For both materials the rubbery

:region was not defined. For SMRD IOOF9OA, the glassy modulus agrees with
the Beam Test but the transition region is at a higher temperature. For
ISD-112, the modulus curve is significantly different from the Beam Test

*tI curve and the peak damping is lower. ISD-112 is believed to be too soft to
test on the DMA.

IMASS AUTOVIBRON DYNAMIC VISCOELASTOMETER

The Imass Autovibron is an automated Toyo Baldwin DDV-II-C
Rheovibron. A sinusoidal tensile strain applied at one end of the test
sample in the longitudinal direction generates a sinusoidal stress at the
other end. There is a phase difference between the two signals of 6. From
these measurements the modulus and loss factor are determined. The sample,
which is a thin flat strip, is held at each end by spring loaded clips on
slender rods which are attached to the driver and transducers. This
arrangement is shown in Figure 7.

The Autovibron is applicable to materials with a Young's moduluc of
1E5 to 1E13 Pa and the temperature range is -40*C to 200'C. The instrument
operates at the fixed frequencies of 3.5, 11, 35 and 110 Hz.

Misalignment and poor condition of the grips can cause errors in the
loss factor measurement. Also, the error in measuring the phase angle has
a larger effect at low values of loss factor than at high values. Lastly,
if the material sample becomes too stiff relative to the compliance of the

instrument, errors in the glassy modulus can occur.

The limitations of the Autovibron include the limited frequency range
of operation ond the fact that two sample sizes or geometries are necessary
to define the entire modulus range. For instance, very soft materials
cannot be tested using a tensile specimen, because it can stretch
significantly under the applied load; they must be tested using shear
grips. Shear grips were not available at the time these tests were run.

The Autovibron results for SMRD IOOF90A and ISD-112 are shown in

Figures 8 and 9, respectively. For SMRD 10OF90A the rubbery data and the
peak loss factor agree well with the Beam Test, but the transition region
is shifted to a higher temperature. The glassy modulus is low because the
sample became too stiff. The sample length or cross sectional area needed
to be changed to determine the glassy modulus more accurately.

Only partial results were obtained for ISD-112 because the sample
stretched more than 10% percent of its original length. Shear grips would
have yield additional data, but were not available. The glassy modulus
determined was nearly the same as that for the Beam Test.

RHEOMETRIC MECHANICAL SPECTROMETER (RMS)

The RMS subjects the sample to torsional forced vibration. The form
of the sample can be either a rectangular bar or a thin flat circular disk,
the former being used for rigid materials and the latter being used for"
softer materials which are mounted between serrated parallel plates. The
sample geometries are shown ip Figure 10. At each temperature,
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measurements are taken at four frequencies, 0.0159, 0.159, 1.59 and 15.9 Hz
(corresponding to 0.1, 1.0, 10.0 and 100.0 radians per second). Since the
tests are performed in torsion, the results are shear modulus, shear loss
modulus and loss factor.

The RMS can test materials with a Young's modulus between 1.7E6 to
6.9E9 Pa over a temperature range of -150 to 3000C. This was the only
instrument to cover 3 decades 

of frequency.

Errors can come from several sources. When using a thin disk sample
on the serrated parallel plates, slippage can occur when the material
becomes stiff at low temperatures resulting in scatter in the loss factor
data. Also at low temperatures, the relative compliance between the
instrument and the sample can cause errors in the modulus. With the
rectangular bar sample, if the material becomes too soft there can be
considerable scatter in the data. The main limitation of the RMS is that

two samples, the rectangular bar and thin disk, are probably necessary to
determine the entire modulus range from glassy to rubbery for most
viscoelastic materials.

The SMRO 1OOF90A data from the RMS is shown in Figure li. The Beam
Test curve is not shown because a different To was required to properly
shift the RMS data. The glassy modulus is the same as the Beam Test, but
the transition region occurs at a lower temperature. The data scatter
above the temperature of peak damping occurred as the material became too
soft for the rectangular bar sample. Changing to the thin disk sample
would have been necessary to obtain data into the rubbery region.

The ISD-112 data, shown in Figure 12, agreed well with the Beam Test
data in the transition region. The scatter in the data toward the glassy

region is probably due to slippage of the sample on the serrated parallel
plates. A rectangular bar sample would have been necessary to define the
rest of the transition region and the glassy region.

STRESS RELAXATION

In a stress reldxation test, the sample is rapidly taken from an n
undeformed state to a deformed state. An MTS test machine, with servo
hydraulic controls, was used to accomplish this. As the sample is

maintained in the fixed strain position, the force decays with time. Since
data is taken over a time span of approximately 0.25 to 100 seconds, and
since the frequency is taken as the reciprocal of Lime, this corresponds to
low frequencies, 4.0 to 0.01 Hz. Therefore, the method is most suitable
for determining modulus data in the rubbery and low transition region.
From the plot of force (or stress) versus time, the storage modulus is
obtained as described in Ferry.4

The temperature range over which this method can be used is limited

by the particular equipment available, but -73 to 150°C is a reasonable
range.

Sources of error in the Stress Relaxation Test include the load cell
and the extensometer, both accurate to +1% of full scale. Another source
of error may be the transformation process itself, but this is not
discussed by Ferry.4
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The materials were tested in a double lap shear fixture, shown in
Figure 13, to determine their shear modulus. For the SMRD 10OF90A and ISD-
11 , the stress relaxation tests were conducted at -4*C, 24°C, and 520C.
The imposed shear strain for SMRD 10OF9OA ranged from 0.2 to 2.0 percent,
and for ISD-112, the imposed shear strain was 5.6 percent at all
temperatures.

The modulus data points are shown on the reduced temperature
nomograms in Figures 14 and 15 for SMRD 10OF90A and ISD-112, respectively.
In both cases the data lay on the rubbery plateau although some data from
ISD-112 was also in the transition region. These data were in fact used to
define the rubbery plateaus of the Beam Test curves shown in these and allIi  previous nomograms.

CONCLUSION

As was seen from the foregoing discussion, the measurement of
accurate damping material properties is not a trivial matter, and there can
be a large variation in results. However, it should be remembered that the
modulus of a typical viscoelastic material can vary by almost a factor of
10,000 from the rubbery to glassy state, so the difficulty of measuring
these properties accurately should not surprise us.

Although individual test methods may have errors in certain regions
such as the glassy, rubbery or transition region because of inherentlimitations or improper sample geometry, the author feels that the large

differences between methods may be the nomogram presentation of the
material properties. The nomograms presented in this paper used the
Jonesl LT shift factor relationship. It should be noted that the test
methods considered in this paper determined material properties from
approximately .01 Hz (for the RMS) to greater than 5000 Hz (for the BEAM).
Representing results from such a broad frequency range using the Jones aT
relationship may be stretching the range of applicability of this
relationship since It was developed from data in the 100 to 5000 Hz range.
Techniques are being developed which generate a shift factor for each
material which may make the properties from various tests compare more

4- favorably.5  An investigation using these new techniques was not included
in the scope of the program under which this work was conducted.

If one is given different properties for'the same material from
different test methods, how does one know which properties are correct?
One way to determine which properties are correct is to do a comparison
between experimentally measured modal characteristics (natural frequency
and damping) of a simple damped system and analytically determined modal
characteristics using a mathematical model of the damped system with the
measured material properties as input.

Naturally, the most accurate properties should yield the smallest
error between measured and predicted results. Interested parties are
referred to a companion paper 6 in these proceedings which shows the Beam
test to have the lowest root mean squared error.
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,,: h =6.22 ni (.245 in.) for SMRD 10OF90A

h =h 4.50 mm (.177 in.) for ISO-112

Figure 13 Stress Relaxation Test Fixture
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VISCOELASTIC CHARACTERISTICS

OF AN

ELASTOHERIC ISOLATOR

R. SCHER FERSIIT
S. N. FERSHT
M1. DENICE, JR.
LITTON GUIDANCE &
CONTROL SYSTEMS

ABSTRACT

An experimental investigation was conducted to identify the transmissibility
characteristics, in terms of the storage and loss functions of an elastomeric
type isolator, over a broad range of temperatures. The prime concern here is
the definition of the complex transmissibility function away from the resonant
frequencies where they interact with instrument rotational vibration modes.
Contrary to what is commonly known, indications are that transmissibility

characteristics are amplitude dependent in small motions, thus refuting the
assumption of alastomers being a linear viscoelastic material. Furthermore,
vibration time length clearly has an Impact on the impedance function of the
elastomeric isolators.
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PROBLEM DESCRIPTION

Mechanical gyros were used for many years as the main angle rate measurement

inertial device. In the last two decades, new angle and angle rate devices
were developed using non-mechanical phenomena. The best known instrument is
the Ring Laser Gyro, or in short RLG, where two counter rotating, gas
discharge glow beams of light are generated in a closed loop rotating reso-
nance cavity.

As the cavity rotates, the light beam travelling in the rotation direction has
a longer distance to travel than that in the opposite direction; this
rotational effect is known as the Sagnac Effect. The small frequency differ-

ence that develope between the two counter rotating brims caa be detected aud
scaled upon beam interference, thus measuring the instant rotation of the
cavity by beat count, The Sagnac effect is general relativistic and leads to
a scale factor which is not dependent on the ref jative properties of the
medium in which the light beams are propagating.

In reality, as the rotation of the cavity decrelbes beyond a certain level, a
lockin phenomena sets ia which diminishes the beat pattern. To overcome this
deficiency, RLGs are often rotationally dithered about their input axis.

Efficient dithering is secured by mounting the gyro on a flexure which is
alternately stressed in bending at the natural frequency of the combined
system. Since the rotational flexure has low material damping, forced dither-
ing at resonance consumes minimal power. A ring laser gyro cluster, consist-
ing of three gyros mounted on a single instrument block with input axes
mutually perpendicular, is a typical strapdown triad configuration measuring 3
dimensional rigid body rotation. The instrument block in most practical
designs is s'-ported on elastomeric isolators. This system, upon dithering,
sets the instrument block in motion which in turn causes a time phase shift in
its rotation about different axes, thus resulting in block coning at the
dither frequency. Instrument coning ic an error zource which often cannot be
compensated for.

The elastomeric isolators, needed for controlling adverse environmental

effects such as shock and vibration, are the prime contributor to the phase
shifting causing the coning error. It became therefore essential to study the

behavior of the isolators at the dither frequencies, 300 to 450 lHz. The
ultimate objective here is to minimize dither instrument error by proper
modelling of the isolators and by conducting an extensive, dynamic system
analysis. The definition of viscoelastic charbcteristics of the isolators is
the subject matter of the present investigation, focusing specifically on the

frequency band of 200 to 600 Hz.

INTRODUCTION

The sensor assembly of an inertial measurement unit is typically FiRapcndt' in
its chassis by a set of elascomeric isolators. Isolators are used on th'R
sensor assembly to: 1) protect the inbtruments (gyros and accelerometers)
irom damage due to handling and operational shock and vibration; and
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2) ottenuate shock and vibration environments to levels acceptable to meet
instrument performance requirements. Elastomeric isolators, in particular,
are used so as to provide necessary damping in addition to compliance in a
relatively small, ligltweight, and inexpensive package. The disadvantage is
that their dynamic behavior is sensitive to temperature, strain, and fre-
quency. New programs generate new requirements creating the need for new
isolator designs. Since many performance criteria must be met throughout the
temperature range (typically -650 to 160'F) and for all the many dynamic
environments of the program spec, there is a need to predict the behavior of
an elastomer for the entire environmental envelope. The use of simple viscous
theory, as is presently commonplace, has severe shortcomings. It does not
predict isolator performance with sufficient accuracy. Selecting a proper
isolator becomes a series of design, build, and test iterations, This waste-
ful method has created a need to better understand the behavior of an elasto-
meric isolator and to better model and predict its performance.

TEST SETUP

Test sata was obtained for two elastomeric isolators, identical except for the
type of elastomer. A sketch and cutaway view of the isolator is shown in
Figure 1. Both elastomers are silicon based and have approximately the same
room temperature stiffness but, because of additional ingredients, they
exhibit different dynamic behavior. Each isolator, with a suspended test
-ass, was vibrated by means of an electromagnetic shaker. The input was a Ig
sine wave, sweeping from 30 to 1000 lIe at 3 octaves/min. The absolute trans-

missibility and phase were recorded by means of piezoelectric accelerometers
iccated on the shaker head and on the suspended test mass. A temperature
chamber surrounding the test setup maintained isolator temperatures between
-55*F and 160*F, which is the typical operating range for our application of
isolators. A schermtic of the test setup is shown in Figure 2.

TEST RESULTS

Transmissibility and phase test results are plotted in Figures 3 through 6 and
7 throuigh 10 for elastomers type A and B, respectively. Results are shown for

two temperatures, 75F and -55*F. Superimposed with test results are
tbeoretical results for both a I DOF viscuus damped model and a viscoelastic
damped model.

The test results are also presented as the storage modulus (G') and loss
modulus (G") plotted as a function of the reduced frequency. These are shown
in Figures 11 and 12 for the two elastomer types. The storage and loss moduli
were calculated from the transmissibil(ty and phase test data for temperatures
between -550F and 160*F and excitation frequencies of 30 to 1000 11z.

MODELLING

Attempts to theoretically predict the dynamic behavior of elascomeric
Isolators in the past have been made with a simple viscous model consisting of
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a spring and damper in parallel. This model has proven to be totally
inadequate.

In an effort to improve our prediction capability, the isolator was modelled
as a viscoelastic system. The general short time (measured in milliseconds)
viscoolastic model often used for elastomeric materials consists of a main
spring, K0, and an infinite number of elastically coupled dampers in parallel
with K0

0K

GENERAL VISCOELASTIC MODEL

The equation of motion is the form

n iwC
G(iw) -GI(w+iG"(w) -K 0+ r(1)

r-r

where G'(w) is the total storage function and G"(w) is the total loss
'MN function.

As a first step a simplified version of the general viscoelastic model was
examined. This consisted of a single elastically coupled damper:

K0 K

C1
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The equation of motion thus becomes

iWC 1c((w) .Ko +- -
0~~i (2)

(t+iWc_)

In Figures 3 through 10, transmissibility and phase test data are compared to
theoretical results of both the viscous damped and viscoelastic damped models.
The natural frequency, on used in the theoretical models, was determined by
the peak in the transmissibility test curve. The damping ratio, qi, was chosen
so the theoretical results approximately matched the transmissibility at
resonance of test data. For the viscoelastic model, the stiffness ratio of
the damper coupLing spring to the main spring is I as this provided the best
match of phase with the test data.

Correlation of the results of the viscoelastic model with phase test data is
very good, and greatly improved over that of the simple viscous model for
frequencies above the resonance, partiLularly in the frequency range of inter-
est, 200 to 600 llz. Correlation of the viscoelastic model with transmissibil-
ity test data is also improved although not as dramatically as with the phase
data. What is important to note here is that the slope of the transmissibil-
ity curve at frequencies above resonance for the viscoelastic model closely
matches the test data, whereas that of the viscous model is drastically
different.

Thermal dependance of the storage and loss moduli are presented ito Figures 11
and 12, showing a high level of scattering. Indications are, based on a
limited amount of data, that elastomeric materials are not necessarily
rehologically simple in a regular sense.

CONCLUSIONS

Viscoelastic modelling of elastomeric isolators appears to be the proper
direction to take. The important conclusion from the work done so far is that

, even with the simplest viscoelastic model, correlation with test data is
greatly improved over the viscous damped model. The next step will be to
expand the simple viscoelastic model to include additional elastically .oupled
dashpot elements, the object being to create a model that will sufficiently
predict the dynamic behavior of an elastomeric isolator.

There are also indications that the elastomeric medium exhibits nonlinear
behavior, with strong frequency dependency. Though in the present experiments
nonlinear response parameters were quantitized, it was not the objective of
the present study to carefully evaluate this nonlinear phenomena. This sub-
ject will be addressed in a future study.

AC-5



REFERENCES

I. Coccoli, J. 1)., Feldman, J., and Itelfant, S., Ring Iaser Gyros, in lbf-i,

Transactions on Aerospace and Electronic Systems, Vol. 
AES-2n, No. 4, JulV

1984.

2. Chow, W. W., ct. al., The Ring Laser Gyro, in Reviews of Modern Physics,

Vol. 57, No. 1, January 1985.

3. Williams, H. L., Structural Analysis of Viscoelastic Materials, in AIAA
Journal, Vol. 2, No. 5, May 1964.

AAC-6



4. 1

SI-

P*1I

-'S..N

4' ~ ~ ~ ~ ~ ~ D FiueAFM~oeIC hlin
AN4YI

UT*X y0

MEHE CHARGE P~t C

L.MITERAMPLIFIERE

Fig E2. VbaonTs ASet-Up

OSILAO CCCLROEE

~~ *.2MS.R S

**. ** ISOLATOR4



Ut-4

0 US

Ut 63+ YLOOL~DAWI

0.10 VICOL---ANM

.MO.

.MG

Inc

ft~a. 1.010

?HASa 'ur'

7140

CO- + VIS0O M OAiP(
300. VISCOLATIC OA1*1O

2.0-.

2M 4 .040 # )1.1 0.02 1.6*02 1 2.61+0 . k 6E-2 61M 1 11
FAOQ1CY (Hsi

Figore 4. Tast of an EIlastomeric Isolator -Type A at 75OF

5t4e.



a TEST
t.10-0-+VSOS .MI

0 1S2EA.0CAM1

INA4MIII I I I 1

101-01 E0 0 lIST p

Figure 5. Test of an Elastomeric Isolator -Type A at -55*F

Inc

Inc
1670.

1100. PHASE

82

-. 00 60.0 WEST
Sao0 VISCOUS DAMPED

.1'400. QVISZOILA11TIC OAMPID

20o

2.4+.01 4.0E.01 6 2C.01 1.01.02 161.02 2.1.0 4.1" 63r,-42 1 0E03

FAEO(JINCY 012u1

Figure 6. Test of an EIlastorneric Isolator -Type A at -550F

AC-9

-V v -'. . ,.4W'
t

ft*t~ t



Lo &W

1.01-02-

Inc

124-0.

Figre . Tet f n ,1stSeicIslaor-Typ a

A-14

'F.. AC-10

Nia

- ;'o 4
1 e IV

% r.O

11p0-t0



i~i.~,0 VI5CO( LASTIC DAMP 90

x Io &3I o taI X500 k"0 I~ I..

Figure 9. Test of An Elastomeric Isolator -Type B At -559F

110

40 ICU M110

boo

I94* 
FROUN0 (4

W.501 1.1 LI0 .10 .(0 .00 .10 .10 .10

Fiue 0so* fanEatoei Isolatr-Tp t 5

400. +VICOAC-MAI

L3*
Mo VSOLSI AE

m ;-



fij;TB1AA1URE1 10

X 1
14.

LOUS~I6
MODUJLUS

tLSJIN

11-414O If-"LU 110C H* LOW MOCLUS)G

Figure 11. Test of an Elastomeric Isolator - Type A

STORAOI

LOIS IE04 - a a aMODULUSa
IL SlIM)

30

a STORAOI MOULUS 0 RID)UCCO FREOUINCY (Hal 00 LSMODULUS (al~

I Figure 12. Tet of an Elastomeric Isolator Type B

U AC- 12

* *4~ * S t. 4s ,



RELSAT DAMPING MAYERIAL DATA

For
VIBRATION DAMPING WORKSHOP II"DAMPING 86"

MARCH 5-7, 1986

RIVIERA HOTEL AND CONVENTION CENTER
LAS VEGAS, NV

AUTHORS: M.L. PARIN
A.D. NASHIF
T.M. LEWISAN ATROL CORPORATION

10895 INIDECO DRIVE
CINCINNATI, Oil 45241
(513) 793-8844

ABSTRACT

The damping properties of two materials, one a structural expoxy
and the other a pressure sensitive film adhesive evaluated for
Boeing Aerospace Company, were presented and discussed. The
damping properties were evaluated and corrolated using one or
more test procedures. These include the resonant, vibrating
beam, mechanical impedance, and relaxation test techniques. The
test methods and data analysis were discussed in relation with
the damping properties of 3M Co. AF-32 structrual adhesive and 3N
Co. io. 966 transfer adhesive. The results show that by properly
applying the temperature frequency superposition principle to the
measured properties, the dynamic mechanical properties can be
correlated over a wide range of frequencies and temperatures.
The dynamic storage modulus (both shear and Young's), material
loss factor, and Poisson's ratio for the materials are presented.

AU-1

AO~AU

- aw



I. INTRODUCTION

The damping properties for viscoelastic materials are generally
charocterized using a number of different experimental test
methods that are selected based on the environmental conditions
of interest. For example, the vibrating beam approach [1-4) is
often used to characterize the linear dan, ing properties in terms
of frequency and temperature for both shear and/or extensional
types of deformation, while the impedance [5,6) and resonant
(2,7,93 techniques are used for determining the non-linear
effects of strain amplitude, and static preloads. Long term
stability is usually investigated using relaxation and/or creep
procedures. The combined results of these different test methods
can then be used to develop analytical (10] and also graphical
(11,12) representations of the dynamic mechanical properties in
terms of the various environmental factors.

This paper discusses the merits and liHm'itations of the resonant
beam, mechanical impedance resonance, and relaxation test
methods. The damping properties of materials that were measured
by various techniques will be presented and discussed. The
results show that the dynamic mechanical properties can bemeasured and correlated over a wide r~nge of'. temperatures and

frequencies for different states f' stress. From the
experimental data, analytical and graphical representations of
the material's damping properties car-, then be developed that
include the environmental effects. This will include the dynamic
storage modulus (both Young's and shear), loss factor, andPois son's ratio for both materials.
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II. MEASUREMENT TECHNIQUES

Many techniques have been used to measure the dynamic properties
of elastomers, the discussion in this paper will be limited to
the vibrating beam, impedance, resonance, and relaxation
techniques. The vibrating beam technique is an indirect method
that does not require an accurate measurement of the excitationforce or the response displacement.

Vibrating Beam Technique

The analysis developed by Ross, Ungar, and Kerwin (13) can he
used to calculate the damping properties of elastomeric materials
from measurements made on the composite beam system. To use the
analysis in its general form, iterative procedures must ba used
because the equations are coupled. However, for specia! cases,
the equations can be simplified and only these will be presented
here.

The technique is based upon utilization of the elastomeric
material in conjunction with vibrating metal beams either in
shear or extension. If the material is applied to the outside of
the metal beam, then the properties can be obtained in extension,
whereas if the material is sandwiched between two metal beams,
then the properties can be obtained in shear. By studying the
various resonances of the damped beam, the effect of frequency on
the properties of the material can be established. Also, by
placinq the system inside an environmental chamber, the effects
of temperature can be investigated.

This procedure has been adopted by the American Standard Testing
Material as the preferred method for determining the damping
properties of materials. The details of this procedure are found
in ASTM E-756-83.

Description of Specimens

Any type of beam specimens can in principle be used to make
measurements on the dynamic properties of elastomeric materials,
previous experience has concentrated mainly on cantilever beams.
This is because of the simplicity of the set-ups for such beams,
and also because at least one end can be simulated properly,
namely the free end. This implies that careful attention must be
applied to insure that the boundary condition at the other end is
fully fixed. The same approach is used for other types of beams,
with clamped-clamped, simply supported, or free-free boundary
conditions. In making dynamic measurements on materials, using
vibrating beam tests, it is necessary to apply the elastomeric
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material on the metal beam and make measurements on the composite
system. Usually the elastomeric material is combined with a
metal beam in different configurations depending on the
properties of the material of interest. The four main
combinations, illustrated in Figure I are:

1. The homogeneous beam. This type is used for measuring the
dynamic properties of metal alloys and composites. Such
materials are usually stiff on their own and do not require
combination with a metal beam.

2. The Oberst or externally coated beam, named for Dr. Oberst
(14) who developed this technique for making measurements on
the dynamic properties of stiff elastomeric materials under
extensional deformation.

3. The symmetric free layer beam. This is a modified Oberst
beam, where the material is coated on both sides. Again, the
properties are determined for extensional deformation. This
beam allows for a simplification in the equations and data
reduction, and it circumvents some experimental difficulties.

4. The sandwich beam. This technique is used to determine the
dynamic properties of elastomeric materials under shear
deformation, and is usually employed for soft materials.

From Figure 1, it can be seen that all beams have massive roots,
necessary to properly simulate the fixed boundary condition at
the root of the cantilever beam, which is usually clamped in a
rigid fixture. These roots can be either integrally machined as
part of the beam, welded to the beam, or epoxied to the beam. It
is emphasized that, for most measurements, the roots are
essential for generating useful and accurate data.

The damping material is usually bonded to the metal beam by means
of an epoxy adhesive which must have a modulus higher than that
of the viscoelastic material. Also, the thickness of the epoxy
layer must be kept to a minimum in general and small in
comparison with the thickness of the damping material. If these
two rules are not followed [15], deformation will occur in the
epoxy layer as well as in the elastomeric layer, and erroneous
data will result. In some cases the elastomeric material is, or
can be, of the self-adhesive type and in that case there will be
no need of an epoxy layer.

The type of metal used for the beams is usually steel or
aluminum. Typical dimensions, used previously, and found to be
successful, are a width of 0.5 inches, a free length of 7 to 10
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inches, a root length of I inch, and a thickness of 0.04 to 0.125
inches. The thickness of the elastomeric material can vary
according to the specific properties of the material and the
temperatures and frequencies of interest. The beam geometry used
in the measurements are found in Tables 1 and 2.

Instrumentation and Set-up

When using the beam specimens of Figure 1 to make measurements of
the dynamic properties of materials one usually requires two
types of transducer. One is needed to apply the excitation
force, and the other to measure the response of the beam.
Because, when making such measurements, it is necessary to
minimize all extraneous sources of damping, apart from that of
the material to be investigated it is essential to use
transducers that are light in weight or of the non-contacting
type.

The beam is mounted in a heavy, rigid, fixture which can provide
sufficient clamping force around the root of the beam to simulate
a fixed end boundary condition. Either a sinusoidal or random
signal can be applied to the excitation transducer via a power
amplifier. The response of the beam is measured by the second
transducer, and is processed through signal conditioning
equipment, and the resulting response is stored in a computer or
on an X-Y recorder plot for later analysis. The set-up is
usually mounted inside an environmental chamber in order to study
such environmental factors as temperature, vacuum, etc. A
schematic of such a set-up is illustrated in Figure 2.

Data Reduction

For all types of beams, the response of the specimen is measured
as a function of frequency. From such a response spectrum, the
frequencies and damping values of the various modes of vibration
of the specimen are determined at each selected temperature. By
varying the temperature of the environmental chamber, these tests
are repeated at various temperatures to investigate the effects
of temperature. The response of the undamped beam is also
needed. Before this data can be processed, it is necessary tohave three sets of information, as follows:

1. The frequency and the loss factor of the damped beam for each
mode of vibration.

2. The frequencies of the undamped beam for the same modes of
vibration, as for the damped beam.
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3. The geometrical properties of the damped and undamped beams,
along with the densities of the materials.

The following data reduction process is used to calculate the
damping properties of materials from measurements conducted on
the four types of beams outlined previously.

Homogeneous Beam Technique

The system loss factor and Young's modulus E of the beam can be
calculated from

n= fnIf (1)
n n

and PbHL4 n2  n
E / ) (2)

where f is the nth natural frequency, w is the nth circular
frequen6 (21f ). p is the mass density, L Is the length of beam,
a is the characteristic number of the nth mode, I is the second
m8ment of area and Af n= is the half-power bandwidth.

Oberst Beam Technique

The properties of the damping material are computed from the
me,jred values of the composite beam using the following
e( ,ns:

(Wn /ln):(1-h h2Pr d 1 + 2e2h2(2+3h2+2h22) + e22 h24 (3)

1 + e2h 2

S e2h2(3 + 6h2 + 4h2
2 + 2e2h23 + e22h24 (4)

(1+e2h2) (1+4e2h2+6e2h2 +4e2h2 +e2 'h2 )

where e2 = E IE E is the Young's modulus of the metal beam, h
= H /H 2 H 2s khe thickness of the damping material, H is th9
thi kniss 3f the metal beam, P = p P/P , is the densit of the
damping material, P is the density ofmetl beam, n is the loss
factor of the compbsite beam in the nth mode, n1 is the loss
factor of the damping material, w' is the nth circilar frequency
of the metal beam and w is lie nth circular frequency of
composite beam. n

It should be noted that significant errors can be introduced

when
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(Wn / in) 2(1+prh 2)( 1.1

Symmetric Free Layer Beam Technique

The equations used for symmetric beams are:

E(W n /W ln)2(l+ 2h2Pr) - 1) El

E2 - (5)

(8h23 + 12 h22 + 6h2)

EI  (6)

n 2 /n +1

(8h23 + 12 h22 + 6h2) E2

The same error problems as noted for Oberst test results can
occur for this technique if

(W / in) 2(1+2Prhr) < 1.10

Sandwich Beam Tech;iique

The following relations for the shear modulus and loss factor of
the damping material are used for sandwiched beams:

(A-B) - 2(A-B)2 - 2(An)2  EIHIH 2an (7)

G2  -X

(1-2A+2B)2 + 4(An)2  L2

An (8)

q2 =

A - B- 2(A-B)2 - 2(An)2
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where

A - (unlwln) (2 + prh 2) (B/2) (9)

B - 1/6(1+h 2)2  (10)

and G2 is the shear modulus of the damping material

For the sandwich beam technique

(Wnlin) 2 (2+prh2)>lO

to minimize numerical errors in the calculations.

Since the properties of damping materials can be computed for
different modes of vibration, and at different temperatures, the
effects of both frequency and temperature can be established,

Usually, the loss factor of the composite beam is measured by the
half-power bandwidth method. This is not the only method to
measure the damping for a given resonant condition of the beam,
and other techniques can be used equally well, within their
limitations, such as decay, modal curve-fitting, Nyquist
diagrams, etc.

Assumptions

As with all techniques and analyses, certain important
assumptions have to be made and are listed here. They should be
kept in mind when making damping measurements on materials.

1. All damping measurements made by beam tests must be made in
the linear range. It is important to select a force level
that will be meaningful, because the analysis for the data
reduction will otherwise not be applicable.

2. For the Oberst and symmetric free layer specimens, the
analysis is the classical analysis for beams. It does not
include the effects of rotatory inertia or shear deformation.
The analysis assumes that plane sections remain plane and,
therefore, care must be taken not to use specimens with a
damping material thickness that is greatly exceeds that of
the metal beam.
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3. The equations presented for computing the properties of
damping materials in shear do not include the extensional
terms of the damping layer. This is a good assumption as
long as the stiffness of the damping layer is considerably
lower than that of the metal beam. Also, these equations
were developed and solved using sinusoidal expansions for the
mode shapes. For cantilever beams, this approximation is
good only for the higher modes. For the first mode, it does
not apply and an equivalent wavelength of vibration must be
assumed empirically, to generate useful data. It has been
the common practice to ignore the first mode results for
sandwich cantilever beams.

4. The loss factor of the metal beam(s) is assumed to be zero.
This is usually a good assumption because steel and aluminum
have loss factors of the order of 0.0001 or less, which is
significantly lower than those of the composite damped beams.
This point should be kept in mind if other beam materials are
used, such as plastic or epoxy.

5. The damping introduced by the mounting conditions is also
assumed to be very low. This is usually a good assumption
provided: a) the clamping configuration has sufficient mass
and stiffness to counteract the moments introduced by the
specimen; and b) the clamping surfaces are flat and paralled
so that the clamping forces are uniformly distributed and
minimize slip.

Impedance Technique

, The impedance technique is usually used to generate the material
properties continuously with frequency and is especially useful
to investigate the effects of preloads on the dynamic properties.
By this technique, a known force is applied to a given specimen
and the resulting displacement is measured. The amplitudes of
the two signals and the phase angle between them are then used to
compute the material properties.

Since most of today's vibration testing is carried out using fast
Fourier analyzer systems, it is necessary to adapt the impedance
technique to such systems. Of particular importance is that the
vibration data is processed on the analyzer using complex
algebra. Thus to compute the dynamic properties of elastomers it
is necessary to work with the real and imaginary components of
the frequency response measurements made on the material of
interest. To illustrate this, consider the single
degree-of-freedom system illustrated in Figure 3. The compliance
X/F for such a system can be written as:
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F k-mW + ikn

If the compliance is defined in terms of its real part R and its
imaginary part I then equation (11) can be rewritten as:

R+li 1 (12)
k-mw7 + ikn

The real and imaginary parts of equation (12) can now be used to

solve for the two unknowns k and n or:

R +I

-Ia(14)n mw2 (R'+Z 2l+R (4

Description of Specimens

Elastomeric materials are usually tested in tension-compression
or in shear states of stress by the impedance technique. Figures
4 and 5 represent some of the ways for combining the material and
the mass to simulate a single degree-of-freedom system. Although
the cross section of the elastomeric material could be of any
shape, it has been common to use specimens having retangular or
circular sections.

Instrumentationand Setup

Similar instrumentation to that of the vibrating beam technique
is used for the impedance technique in order to apply a force to
the specimen and measure its response. Typically, the force is
applied by either a shaker or an impact transducer while the
response is measured by an accelerometer. By controlling the
amplitude of the applied force, the non-linear effects on the
dynamic properties can be investigated. Also by preloading the
specimens, such effects can be studied.

Data Reduction

Equations (13) and (14) can be used to compute the dynamic
properties of elastomeric materials when tested either in

AD-10
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shear or tension-compression states of stress as illustrated for
both specimens of Figures 4 and 5. For either type the loss
factor is computed directly from equation (14) while the modulus
needs to be computed from- the specimen stiffness k of equation
(13).

Shear Specimen

The shear modulus of the elastomeric material is determined after
the stiffness value k has been established by using the following
expression:

G kW (15)
A

where H is the height of the specimen and A is its cross-

sectional area.

Tension-compression Specimen

Shape factors are usually considered [16) in reducing the data
generated on tension-compression specimens to account for the
Poisson's effects. In such cases Young's modulus, E, of the
elastomeric material is given by:

E =kH
A(1+0(A/A')2]

where A' is unloaded area of the specimen and 0 is a material
constant equal to 1.5 or 2.0, depending on whether the material
is filled or an unfilled elastomer, respectively.

Assumptions

The major point for consideration in making impedance
measurements is that the state of stress should be well defined.
Unfortunately, this is difficult unless extreme care is taken in
designing the specimen and making measurements on it.
Specifically, the following points should be kept in mind.

1. To minimize the effects of free edges on the measured values
for the shear specimen it is recommended that the height to
thickness ratio of the specimen be greater than 4.
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2. To minimize the effects of shape factors on tenslon-compres-
sion specimens it is necessary to make the loaded area smallin comparison with the unloaded area.

3. The type of excitation and pickup methods and locations
should be selected to avoid rocking motions.

4. Although measurements could be made over a wide frequency
range using the impedance technique, it has been found that
in order to minimize the effects of error magnification
factors on the computed properties it is necessary to limit
the frequency range to that around the resonance frequency
only. Practically, it has been demonstrated, with currentUequipment, that the frequency range could be as wide as a

decade with the specimen resoniant frequency approximately in
its center. Thus different masses are needed to consider
different frequency ranges.

Resonance Technique

The resonance technique is a special case of the impedance one
where measurements and analysis of the data is restricted to the
resonant frequency. Thus different masses and/or specimen
geometries are needed to investigate the frequency effects.
Although this technique is restricted to one frequency it is very
useful because of its simplicity and the fact that high
amplification at resonance help in studying the effects of
dynamic nonlinearities on the material properties.
As far as the analysis for this technique, it is sufficient to
keep in mind that at resonance.

u=k
n In (16)

in order to compute the specimen stiffness. The loss factor of
the specimen can be measured by many methods such as the half-
power bandwidth method or by the following formula:

1
n =/ (17)

where Q is the amplification factor at resonance.

All points considered for the impedance technique apply equally __~well for the resonance one.
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Relaxation Technique

By this technique the material is subjected to a constant

displacement and the change in the force is monitored over a
period of time. The time interval where a noticeable change In
force occurs depends on the temperature range where the material
i7 being tested. For exomple, if the material is tested in its
rubbery region, then the force can reach equilibrium in a short
time. However, as the test temperature causes the material to
reach its transition and glassy regions, longer time periods will
be needed since the fece will continue to change with time for 'I
longer periods.

Figure 6 illustrates the measurements made by the relaxation
technique. The elastomeric sample having a length of L is
mounted to a rigid fixture on end and to a force transducer on
the other. The specimen is stretched by displacement AL and the
force signal can thus be monitored with time and recorded.

The time domain relaxation modulus can then be described as

E(t) F(t) L (18)A AL ,

where F(t) is, the load, A is the loaded area, L is the sample
length, and AL is the displacement.

The time domain relaxation modulus can then be transformed into
the frequency domain by [17).

i iwe )e { 9(9E(i w) - i fE(O) e- W de  (19)

where

G (t-t') (20)

and t' is some past time and t is present time. Rewriting thisequation for the storage (E R) and loss modulus (Eld gives:

ER(w) = E(e)sinwede (21)
J

= EfE(e)cos wede (22)

Equations (21) and (22) can then be used, along with the time
domain loading history and specimen geometry, 'o compute the
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dynamic properties for viscoelastic materials in either shear or
tension-compression states of stress by applying numerical
integration procedures. The loss factor is then determined by
taking the ratio of equation (22) to equation (21).
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IMl. RESULTS AHO DISCUSSION

Tables 1 and 2 summarize the different specimens that were used
to determine the damping properties of AF-32 structrual adhesive.
As can be seen from Table 1 a variety of speciman geometries were
used for the 966 materials so that the properties could be
correlated over a wide range of frequencies for both shear and
tension/compr!toti states. The specimen used to determine the
properties of AF-32 were limited to sandwich and free layer
beams.

All the experimental data was analyzed usig 'the equations I
presented in the previous section. The damping propertles for
966 and for AF-32 are plotted in Figures 20, 21, 22, 23, 24, 25,
35, 36, 45, 46, 59, 52, 57, 58, 59, and 60 in terms of reduced
frequency using the temperature/frequency equivalance principl'es.
For comparison purposes, the dynamic Young's and Shear modulus
data for 966 are superimposed onto the single graph shown in
Figure 59. Figure 60 shows the same comparison for AF-32.

Figures 53, 54, 55, and 56 present the dynamic Shear and Young's
modulus material properties of 966 in formats that eliminate both
temperature and frequency (18]. The purpose for using these
formats is two fold. First, both the modulus vs. loss modulus
and modulus magnitude vs. loss factor plots can be used to
identify points that diverge from the general trends of the data.
These plots can, thus, be used as a tool to identify data points
that fall outside some established acceptance ban.

These points can then be eliminated prior to developing the
analytical models for the modulus and loss factor.

The data presented in Figure 60 for AF-32 and in Figure 59 for
966 illustrates good correlation over a wide range of reduced
frequencies. The 966 data also shows excellent correlation
between the various test methods. Also, the loss factor for both
shear and tension/compression states of stress are essentially
the same for the AF-32 and the 966 materials. The data also
shows that for both the AF-32 and the 966 that the Young's
modulus is approximately three the shear modulus in the rubbery
and transition zones and then fall to approximately 2.7 times in
the glassy zone. This indicated a Poisson's ratio very close to.5 for the rubbery region and the transition region and

approximately 0.34 for the glassy regions.
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S.

IV. SUMMARY AND -CONCLUSIONS

Different techniques for measuring the dynamic properties of
elastomers have been presented and discussed, The dynamic
properties for the elastomer have been measured by the various
techniques and correlated over wide frequency and temperature
ranges. It was found that there is good agreement in the results
of the various techniques.
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TABLE 1

SPECIMEN DESCRIPTION 3M 966

Technique Specimen

Vibrating Beam 10" Length Sandwiched Beam
Vibrating Beam 5" Length Sandwiched Beam

Vibrating Beam 10" Length Sandwiched Beam
Vibrating Beam 5" Length Sandwiched Beam

Resonance-Impedance .25" Length/.8125"OD-.375"ID
Tension-Compression Link

.020" Thick/8in2 Shear Joint

Relaxation 5.5" Length/.28125in2

Tension Sample

4.5in2 Shear Joint
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A TABLE 2

*1 SPECIMEN DESCRIPTION 3M AF-32

Technique Specimen

Vibrating Beam 1OW Length Sandwiched Beam
Vibrating Beam 10" Length Mod Oberst Beams
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Figure 4: Typical Test Specimen Setup for Resonant and Mechanical
Impedance Shear Test Techniques
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ABSTRACT

Experimental techniques for measuring the dynamic mechanical
properties of two polymeric damping materials are discussed.
These include the resonant beam, mechanical impedance, resonance,
and relaxation test methods. Test methods are discussed in
conjunction with the damping evaluation of 3M Company Acrylic
Core Foam No. 4205 and General Electric SMRD 100-F90 for both
shear and tension/compression states of stress. It is shown that
by using the temperature/frequency superposition principle in
conjunction with the experimental data, obtained from these test
methods, the dynamic mechanical properties can be generated and
correlated over a wide range of frequency and temperature. The
storage modulus (both shear and Young's), loss factor, and
Poisson's ratio for both materials are presented and discussed.
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I. INTRODUCTION

Viscoelastic materials are generally characterized using a number
of different experimental test methods that are selected based on
the environmental conditions of interest. For example, the
vibrating beam approach [1-4] is often used to characterize the
linear damping properties in terms of frequency and temperature
for both shear and/or extensional types of deformation, while the
impedance (5,6] and resonant [2,7,9) techniques are used for
determining the non-linear effects of strain amplitude, and
static preloads. Long term stability is usually investigated
using relaxation and/or creep procedures. The combined results
of these different test methods can then be used to develop
analytical (10] and also graphical [11,12) representations of the
dynamic mechanical properties in terms of the various
environmental factors.

This paper discusses the merits and limitations of the resonant
beam, mechanical impedance resonance, and relaxation test
methods. The damping properties of an acrylic material and a
modified epoxy material that ware measured by the various
techniques will be presented and discussed. The results show
that the dynamic mechanical properties can be measured and

correlated over a wide range of temperatures and frequencies for
different states of stress. From the experimental data,
analytical and graphical representations of the material's
damping properties can then be developed that include the
environmental effects. This will include the dynamic storage
modulus (both Young's and shear), loss factor, and Poisson's
ratio for both materials.
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II. MEASUREMENT TECHNIQUES

Although many techniques have been used to measure the dynamic
properties of elastomers, the discussion in this paper will be
limited to the vibrating beam, impedance, resonance, and
relaxation techniques.

Vibrating Beam Technique

The analysis developed by Ross, Ungar, and Kerwin (13) can be
used to calculate the damping properties of elastomeric materials
from measurements made on the composite beam system. To use the
analysis in its general form, iterative procedures must be used
because the equations are coupled. However, for special cases,
the equations can be simplified and only these will be presented
here.

The technique is. based upon utilization of the elastomeric
material in conjunction with vibrating metal beams either in
shear or extension. If the material is applied to the outside of
the metal beam, then the properties can be obtained in extension,
whereas if the material is sandwiched between two metal beams,
then the properties can be obtained in shear. By studying the
various resonances of the damped beam, the effect of frequency on
the properties of the material can be established. Also, by
placing the system inside an environmental chamber, the effects
of temperature can be investigated.

This procedure has been adopted by the American Standard Testing
Material as the preferred method for determining the damping
properties of materials. The details of this procedure are found
in ASTM E-756-83.

Description of Specimens

Although any type of beam specimens can in principle be used tr
make measurements on the dynamic properties of elastomeric
materials, previous experience has concentrated mainly oa,
cantilever beams. This is because of the simplicity of the
set-ups for such beams, and also because at least one end can be
simulated properly, namely the free end. This implies that
careful attention must be applied to insure that the boundary
condition at the other end is fully fixed. The same approach is
used for other types of beams, with clamped-clamped, simply
supported, or free-free boundary conditions. In making dynamic
measurements on materials, using vibrating beam tests, it is
necessary to apply the elastomeric material on the metal beam and
make measurements on the composite system. Usually the
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elastomeric material is combined with a metal beam in different
configurations depending on the properties of the material of
interest. The four main combinations, illustrated in Figure 1
are:

='9

1. The homogeneous beam. This type is used for measuring the
dynamic properties of metal alloys and composites. Such
materials are usually stiff on their own and do not require
combination with a metal beam.

2. The Oberst or externally coated beam, named for Dr. Oberst
(14] who developed this technique for m aking measurements on
the dynamic properties of stiff elastomeric materials under
extensional deformation.

3. The symmetric free layer beam. This is a modified Oberst
beam, where the material is coated on both sides. Again, the
properties are determined for extensional deformation. This
eam allows for a simplification in the equations and data

reduction, and it circumvents some experimental difficulties.
1

4. The sandwich beam. This technique is used to determine the
dynamic properties of elastomeric materials under shear
deformation, and is usually employed for soft materials.

From Figure 1, it can be seen that all beams have massive ro ts,
necessary to properly simulate the fixed boundary condition at
the root of the cantilever beam, which is usually clamped in a
rigid fixture. These roots can be either integrally machined as
part of the beam, welded to the beam, or epoxied to the beam. It
is emphasized that, for most measurements, the roots are
essential for generating useful and accurate data.

The damping material is usually bonded to the metal beam by means
of an epoxy adhesive which must have a modulus higher than that
of the viscoelastic material. Also, the thickness of the epoxy
layer must be kept to a minimum in general and small in
comparison with the thickness of the damping material. If these
two rules are not followed [15], deformation will occur in the
epoxy layer as well as in the elastomeric layer, and erroneous
data will result. In some cases the elastomeric material is, or
can be, of the self-adhesive type and in that case there will be
no need of an epoxy layer.

The type of metal used for the beams is usually steel or
aluminum. Typical dimensions, used previously, and found to be
successful, are a width of 0.5 inches, a free length of 7 to 10
inches, a root length of 1 inch, and a thickness of 0.04 to 0.125

I
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inches. The thickness of the elastomeric material can vary
according to the specific properties of the material and the
temperatures and frequencies of interest.

Instrumentation and Set-up

When using the beam specimens of Figure 1 to make measurements of
the dynamic properties of materials one usually requires two
types of transducer. One is needed to apply the excitation
force, and the other to measure the response of the beam.
Because, when making such measurements, it is necessary to
minimize all extraneous sources of damping, apart from that of
the material to be investigated, it is essential to use
transducers that are light in weight or of the non-contacting
type.

The beam is mounted in a heavy, rigid, fixture which can provide
sufficient clamping force around the root of the beam to simulate
a fixed end boundary condition. Either a sinusoidal or random
signal can be applied to the excitation transducer via a power
amplifier. The response of the beam is measured by the second
transducer, and is processed through signal conditioning
equipment, and the resulting response is stored in a computer or
on an X-Y recorder plot for later analysis. The set-up is
usually mounted inside an environmental chamber in order to study
such environmental factors as temperature, vacuum, etc. A
schematic of such a set-up is illustrated in Figure 2.

Data Reduction

For all types of beams, the response of the specimen is measured
as a function of frequency. From such a response spectrum, the
frequencies and damping values of the various modes of vibration
of the specimen are determined at each selected temperature. By
varying the temperature of the environmental chamber, these tests
are repeated at various temperatures to investigate the effects
of temperature. The response of the undamped beam is also
needed. Before this data can be processed, it is necessary to
have three sets of information, as follows:

1. The frequency and the loss factor of the damped beam for each
mode of vibration.

2. The frequencies of the undamped beam for the same modes ofvibration, as for the damped beam.

3. The geometrical properties of the damped and undamped beams,
along with the densities of the materials.

AE-5
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The following data reduction process Is used to calculate the
damping properties of materials from measurements conducted on
the four types of beams outlined previuusly.

Homogeneous Beam Technique

The system loss factor n and Young's modulus E of the beam can be
calculated from

n = On/fn (1)

and E pbL n2/(an21) 
(2)

where f is the nth natural frequency, w is the nth circular
frequendy (2%f ), p is the mass density, L Is the length of beam,
a is the charHcteristic number of the nth mode, I is the second
mgment of area and Afn is the half-power bandwidth.

Oberst Beam Technique

The properties of the damping material are computed fron the
measured values of the composite beam using the following
equations:

2 = + 2e2h2(2+3h2+2h22, + e22h 4 
(3)

(n1 ln) (I+h2Pr) 
I + e=h2

2 3 2 4e2h2(3 +h + 4h + 2eh + 2 2  (4)
2~ 3 24- 1 ,(1+e2h,) (1+4e2h2+6e2h2 +4e2h2 3+e2 h2 )

where e2  E /E, E is the Young's modulus of the metal beam, h
= HI/Hk. H ?s \he khickness of the damping material, H is th9
thi~nss the metal beam, P /P P is the densitW of the
damping material, p is the density ofme6 l beam, n is the loss
fac or of the compbsite beam in the nth mode, n is the loss
factor of the damping material, w is the nth circilar frequency
of the metal beam and wn is hIle nth circular frequency of
composite beam,

Symmetric Free Layer Beam Technique

The equations used for symmetric beams are:
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IN /W I) 2(1+2h2 r) - 1) El

E2  (5)

(8h2
3 + 12 h22 + 6hz)

El (6)

T12/n =+1

(8h23 + 12 h22 + h2) E2

Sandwich BPam Tschnique

The following relations for the shear modulus and loss factor of
the damping material are used for sandwiched beams:

(A-B) - 2(A-B)2 - 2(An)2  EIH 1Hza n  (7)

G2 =X (1-2A+2B)2 + 4(An)2  L2

An (8)
n2 =

A - B - 2(A-B) 2 - 2(An )2

~i

where

A = (un/'in)2 (2 + orh2) (B/2) (9)

B = 116(1+h 2)2  (10)

and G2 is the snear modulus of the damping material
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Since the properties of damping materials can be computed for
different modes of vibration, and at different temperatures, the
effects of both frequency and temperature can be established.

Usually, the loss factor of the composite beam is measured by the
half-power bandwidth method. This is not the only method to
measure the damping for a given resonant condition of the beam,
and other techniques can be used equally well, within their
limitations, such as decay, modal curve-fitting, Nyquist
diagrams, etc.

Assumptioi and Precautions

Assumptions

As with all techniques and analyses, certain important
assumptions have to be made and are listed here. They should be
kept in mind when making damping measurements on materials.

1. All damping measurements made by beam tests must be made in
the linear range. It is important to select a force level
that will be meaningful, because the analysis for the data
reduction will otherwise not be applicable.

2. It is important to keep the amplitude of the force signal,
applied to the excitation transducer, constant with
frequency. This is particularly important when making
bandwidth measurements on modes of vibration with high
damping. If the force cannot be kept constant, then the
response of the beam must be divided by the input force in
order to obtain the normalized transfer functions.

3. For the Oberst and symmetric free layer specimens, the
analysis is the classical analysis for beams. It does not
include the effects of rotatory inertia or shear deformation.
The analysis assumes that plane sections remain plane and,
therefore, care must be taken not to use specimens with a
damping material thickness that is greatly exceeds that of
the metal beam.

4. The equations presented for computing the properties of
damping materials in shear do not include the extensional
terms of the damping layer. This is a good assumption as
long as the stiffness of the damping layer is considerably
lower than that of the metal beam. Also, these equations
were developed and solved using sinusoidal expansions for the
mode shapes. For cantilever beams, this approximation is
good only for the higher modes. For the first mode, it does
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not apply and an equivalent wavelength of vibration must be
assumed empirically, to generate useful data. It has been
the common practice to ignore the first mode results for
sandwich cantilever beams.

5. The loss factor oi the metal beam(s) is assumed to be zero.This is usually a good assumption because steel and aluminum

have loss factors of the order of 0.0001 or less, which is
significantly lower than those of the composite damped beams.
This point should be kept in mind if other beam materials are
used, such as plastic or epoxy.

6. The damping introduced by the mounting conditions is also
assumed to be very low. This is usually a good assumption
provided: a) the clamping configuration has sufficient mass
and stiffness to counteract the moments introduced by the
specimen; and b) the clamping surfaces are flat and paralled
so that the clamping forces are uniformly distributed andminimize slip.

Precautions

The following is a list of precautions that must be observed as a
result of the geometry of the specimen, instrumentation, and
assumptions mentioned above. It is very important to pay close
attention to these precautions, for good measurements to be taken
at all times and for all conditions.

1. The first point is rather general in nature. Making
measurements on the damping properties of materials is
usually a very complex and involved process because it
involves materials, vibration, instrumentation, computers,
and so on. It is necessary to pay close attention to all
details of the experiment from the fabrication of the
specimen to the actual data reduction and analysis. Good and
careful experimentalists are needed to work successfully in
this area.

2. The first mode of vibration of the cantilever beam should not
be used, unless extreme care is taken, to calculate the
properties of the material being investigated. This
precaution is necessary because, in the first mode, highamplitudes usually result which may introduce nonlinear

effects into the measurements. Also, the assumptions made in
the analysis of the sandwich beams are not well duplicated
for this mode.
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3. The damping of the metal beam is set to zero in the analysis.
This is usually true because metal damping is considerably
lower than that of good damping materials.

4. When applying a good damping material on a metal beam, the
resulting response is usually well damped and the
signal-to-noise ratio is not very high. Therefore, it is
important to select an appropriate ratio of the thickness of
the damping material to that of the metal beam so as to end
up with moderate amounts of modal damping. Also, extremely
low damping in the system should be avoided, because the
differences between the damped and undamped systems will then
be too small.

5. With the exception of the homogeneous beam technique, all
other techniques are based upon measurements on the damped
and undamped systems and making use of the differences, which
are often small. The expressions for such differences are in
the denominator of the equations used for data reduction, so
if small errors are made during the measurements, or in the
geometry of the beam, then those small errors will be
magnified considerably during the data reduction process.
This will lead to erroneous results. As a general guideline
to prevent such conditions from occurring, it is usually
recommended that:

a. For the Oberst beam the term (w / l )2(1+Prh2) must be at
least equal to or greater than T.1""

b. For the symmetric free layer beam, the same precaution as
that of2 the Oberst beam applies for the expression
(wn/win) (1+2 Prh2)2J.10.

c. For the sandwich beam technique,2 the same precaution
applies for the expression (wn/wln) (2+Prh 2).

6. The Oberst and symmetric free-layer beam techniques4 are
usually used for stiff materials (Young's modulus of 10 psi
or higher), where the properties are measured in the glassy
and transition regions. These materials are usually applied
as free-layer treatments, and include enamels, loaded vinyls,
and so on.

7. The sandwich and symmetric constrained layer beam techniques
are usually used for sfter viscoelastic materials, with
moduli of the order of 10 psi or less. For temperatures and
frequencies for which the material's moduli is less than 80
psi the sandwich beam technique is usually less viable.

AE-10
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Impedance Technique

The impedance technique is usually used to generate the material
properties continuously with frequency and is especially
useful to investigate the effects of preloads on the dynamic
properties. By this technique, a known force is applied to a
given specimen and the resulting displacement is measured. The
amplitudes of the two signals and the phase angle between them
are then used to compute the material properties.

Since most of today's vibration testing is carried out using fast
Fourier analyzer systems, it is necessary to adapt the impedance
technique to such systems. Of particular importance is that the
vibration data is processed on the analyzer using complex
algebra. Thus to compute the dynamic properties of elastomers it
is necessary to work with the real and imaginary components of
the frequency response measurements made on the material of
interest. To illustrate this, consider the single
degree-of-freedom system illustrated in Figure 3. The compliance
X/F for such a system can be written as:

X= 1

2(11)
F k-mu + ikq

If the compliance is defined in terms of its real part R and its
imaginary part I then equation (11) can be rewritten as:

R + il -- 2 (12)
k-mw2 + ikn

The real and imaginary parts of equation (12) can now be used to
solve for the two unknowns k and n or:

k = 2 + R2 + 12 (13)

2 2-I 2' (14)

mw (R +1 )+R

AE-11
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Description of Specimens

Elastomeric materials are usually tested in tentsion-compression
or in shear states of stress by the impedance technique. Figures
4 and 5 represent some of the ways for combining the material and
the mass to simulate a single degree-of-freedom system. Although
the cross section of the elastomeric material could be of any
shape, it has been common to use specimens having retangular or
circular sections.

Instrumentation and Setup

Similar instrimentation to that of the vibrating beam technique
is used for the impedance technique in order to apply a force to
the specimen x m'easure its response. Typically, the force is
applied by < a shaker or an impact transducer while the
response is mtdsured by an accelerometer. By coptrolling the
amplitude of the applied force, the non-linear effects on the
dynamic properties can be investigated. Also by preloading the
specimens, such effects can be studied.

pData Reduction

Equations (13) and (14) can be used to compute the dynamic
properties of elastomeric materials when tested either in
shear or tension-compression states of stress as illustrated for
both specimens of Figures 4 and 5. For either type the loss
factor is computed directly from equation (14) while the modulus
needs to be computed from the specimen stiffness k of equation(13).

Shear Specimen

The shear modulus of the elastomeric material is determined after
the stiffness value k has been established by using the following
expression:

G -15)
A

where II is the height of the specimen and A is its cross-
sectional area.

mU
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Tension-compression Specimen

Shape factors are usually considered [16) in reducing the data
generated on tensiun-compression specimens to account for the
Poisson's effects. In such cases Young's modulus, E, of the
elastomeric material is given 

by:

E W kH
A[I1+(A/A' VI

where A' is unloaded area of the specimen and B is a material
constant equal to 1.5 or 2.0, depending on whether the material
is filled or an unfilled elastomer, respectively.

Assumptions and Precautions

The major point for consideration in making impedance
measurements is that the state of stress should be well defined.
Unfortunately, this is difficult unless extreme care is taken in
designing the specimen and making measurements on it.
Specifically, the fo11 ,wing prInts should be kept in mind.

1. To minimize the effects of free edges on the measured values

for the shear specimen it is recommended that the height to
thickness ratio of the specimen be greater than 4.

2. To minimiZe the effects of shape factors on tension-compres-
sion specimens it is necessary to make the loaded area small

- in comparison with the unloaded area.

3. The type of excitation and pickup methods and locations
should be selected to avoid rocking motions.

4. Although measurements could be made over a wide frequency
range using the impedance technique, it has been found that
in order to minimize the effects of error magnification
factors on the computed properties it is necessary to limit
the frequency range to that around the resonance frequency
only. Practically, it has been demonstrated, with current
equipment, ihat the frequency range could be as wide as a I
decade witn the specimen resonant frequency approximately in
its center. Thus different masses are needed to consider
different frequency ranges.

AE-13
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Resonance Technique

The resonance technique is a special case of the impedante one
where measurements and analysis of the data is restricted to the
resonant frequency. Thus different masses and/or specimen
geometries are needed to investigate the frequency effects.
Although this technique is restricted to one frequency it is very
useful because of its simplicity and the fact that high
amplification at resonance help in studying tho effects of
dynamic nonlinearities on the material properties.
As far as the analysis for this techniquet, it is sufficient to
keep in mind that at resonance:

K k (16)
n in

in order to compute the specimen stiffness. The loss factor of
the specimen can be measured by many methods such as the half-
power bandwidth method or by the following formula:

n =  n -T 1(17)

where Q is the amplification factor at resonance.

All points considered for the impedance technique apply equally

well for the resonance one.

Relaxation Technique

By this technique the material is subjected to a constant
displacement and the change in the force is monitored over a
period of time. The time interval where a noticeable change in
force occurs depends on the temperature range where the material
is being tested. For example, if lhe material is tested in its
rubbery region, then the force can reach equilibrium in a short
time. However, as the test temperature causes the material to
reach its transition and gl~ssy regions, longer time periods will
be needed since the force will contiaue to change with time for
longer periods.

Figure 6 illustrates the measurements made by the relaxation
technique. The elastomeric sampie having a length of L is
mounted to a rigid fixture on end and to a force transducer on
the other. The specimen is stretched by displacement aL and the
force signal can thus be monitored with time and recorded.

AE-14
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The time domain relaxation modulus can then be described as

E(t) - F(t) L (18) IAaL

where F(t) is the load, A is the loaded area, L is the sample
length, and AL is the displacement.
The time domain relaxation modulus can then be transformed into
the frequency domain by (17].

E(iw) - t E(e) e-iWe do (19)

where

e= (t-t') (20)

and t' is some past time and t is present time. Rewriting this
equation for the storage (ER) and loss modulus (E,) gives:

E R( ) = OfE(e)sinwede (21)

= WfE(e)cos wede (22)

Equations (21) and (22) can then be used, along with the time
domain loading history and specimen geometry, to compute the
dynamic properties for viscoelastic materials in either shear or
tension-compression states of stress by applying numerical
integration procedures. The loss factor is then determined by
taking the ratio of equation (22) to equation (21).

I
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Ill. RESULTS AND DISCUSSION

The experimental data taken for SMRO 100-F90 and Acrylic Core
Foam 4205 was analyzed using the cquation presented in Section
II. The data is presented in Figures 10, 11, 21, 28, 33, 34, 35,
and 36 in terms of reduced frequency using the Nashif empirically
derived shift factor:

aot = 1 - 175.707(23)

For comparison purposes, the SMRO and the Acrylic Core Foam data
have been plotted in Figures 35 and 36 for both the shear and the
tension-compression states of stress. These plots include data
taken from all of the test methods described in Section II.

By comparison the reduced frequency nomogram for SMRD in Figures
11 and 36, it can be seen that two different reference
temperatures were used to shift the data. The Figure 11 plot is
composed of data taken from the beam test method. This test
method have a test frequency range of approximately 50 Hz up to
15,000 liz, or less than 3 decades, and this data was used as the
basis for selecting a reference temperature suitable for
collapsing the available data onto a master curve. Figure 36 is
composed of test data generated from the beam, impedance, and
resonant methods plus data generatetd from the time domain
relaxation test. Th relaxation test data has a frequency range
of approximately 10 Hz up to .02 Hz. By including the test
data generated for all the different test methods gives the
damping properties ov_ a frequency range, covering in excess of. 9 decades, from Ix10 Hz up to 15,000 Hz. When all the test
data was combined, it was necessary to select a "new" reference
temperature in order to collapse the data onto a continuous
master curve in the reduced frequency domain.

This same explanation is applicable to the acrylic core foam data U
presented in Figures 10 and 35. Again, the difference in the
selected reference temperature (To) between these two plots is
due to the expanded frequency range that is available when the
time domain test data is transformed to the frequency domain and
then coupled with the direct frequency domain damping properties
obtained from the beam, mechanical impedance, and resonant testmethods. f

p
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It can be seen from the above figures, that there exists good
correlation between the different techniques over wide frequency
ranges. Also, the loss factor measured in shear is essentially
the same as that measured in tension-compression. It can also be
seen that for acrylic core foam the Young's modulus is
approximately three times the shear modulus in the rubbery and
transition region and only about 2.7 times in the glassy region,
indicating that Poisson's ratio is close to 0.5 in the rubbery
and transition regions and about 0.35 in the glassy one.

For SHRO the Young's modulus is also approximately three times
the shear modulus in the rubbery and transition regions and only
about 2.5 times in the glassy region, thus indicating that
Poisson's ratio is again close to 0.5 in the rubbery and
transition regions but about .30 in the glassy zone.

AE-1

AEI



IV. SUtMARY AND CONCLUSIONS

Different techniques for measuring the dynamic properties of
elastomers have been presented and discussed. The dynamic
properties for the elastomer have been measured by the various
techniques and correlated over wide frequency and temperature
ranges. It was found that there is good agreemen in the results
of the various techniques.

The test results also revealed the importance of having
experimental data over a wide frequency range in order to
properly imply the temperature/frequency superposition principle.
It was found that with approximately 8 decades of frequency data
the damping properties for the test methods could be collapsed
onto master curves.

AI
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Figure 4: Typical Test Specimen Setup for Resonant and Mechanical
Impedance Shear Test Techniques
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IL HUC
Rubber i 0 composite material ci an elamtomeric astrf.x and iller

partx Ccarbon b, ctk fibrea textiles, ... ). Although it *eem to ill

Cnventions14 wel1nown material to utuiders th uuy at its
pri is still a major muojezt of re*arch efforts for rubber
producers and rubber users. Moreover, there In a series of now
rubbrty1 aatwrialx which have been developed in recent years. In
genwral one can state that theme new materilals deal with synthetic
polymers which show a high internal daplng behaviour. Obvious 1, the
Mild of applica tina of these new mterials Is such larger then It wan
Yrr I, .ven .ual (natural) rubber materials.
!hey can .nerally bo called viaco-elastic material.: materials which
show ta have an lastic property so well as on important viscoue
(damping) property in their mchanical behaviour.

Cee¢ding on thp camposition (and process parameters) of vinco-olaotic
maotils a broad Variation in mechanical propertlea can be obtained.
In other torms vU~m Imi*122e Iff"u l11111" X bt 4211an mnD

The oechanical characterimation of vlco-elst4-. materials t moast often
made by weans of Its dynamic propertlest dynamic stfineas and dynamic
damping. The knowledge of these dynamic properties In Important, nat
only f~r dealan purposes, but alo for .uo l ity and process control. far
reception control# and tor research and development purposes.

The presented text concerns measuring procedure* for determining the
dgnar properties of visco-ePastic materials. The baeic prlncipl;e
which are avntlonrd are valid for all visco-el(,stic materials. The
QWperiental testplano only have been carried out for a oet of
Industrial natural and synthetic rubber compounds.
Its aim is to correlate the readin * of different measuring procedures
and tet principles. It vil also ae demonstrated that relaxation teots
(mtepvise excitaton).present a lot amore advantage and quallties from
the practical point of view than clasmic:l dynac: (harmonic excitation)
texts. Still, there Is very few Information in literature about
relaxaiotn tet and there are ractically no comercially available
devicex which operate on basis of rhe relaxation principle.

Indeed what rubber induntry and- more specifically- rubber users need
are last, accurate and mlple meauring procedures which cheracterlee
the dynamic propertien of visco-el stic materials In a fast, simple and
reproducible way.
The w or problem however Is that the dynamic propertie of
vleo-elastic material* are Importantly influenced by mesuring
conditions. The consequences with respect to the lmpletent tion o
dynamic mesuring techniques are Importan t
a duvicev v- 9 operate with different measuring principles, show

Incoherent readings.
* devlces which operate with similar measuring principles but at other
relcvnt ateauring conditions will produce different (however
coherent) reudIng.

* rubber induntry usea a broad set of varying testing equipment
mostly technological simulation tests.

All these conaequences result in a hugh waist of time, efforts and
money.

The presented text will prove that bt C g|IIa g et e!Cf t l ge g !f !r
,~rn,,7grf gre n,5 Cgb!E!D2L !bta HICE222121 1 atu 22 cc Most

Inr- ner to curi m this stotement, a number of different- currently
uned- aesuring met-upe have bn resumed:

" dynamical tenets
- with compression load
- with free shear load
- with tension load

" relaxation testa:
- with compression load
£ with tension load
- with indentation load

" p.eudo-atatical testa!
w ith compression ,adIwith tension load
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The instrumentation which )as boon wood to realie then* **souring

t)the dynamic testort an olehtro-hidraullcal test equipment with
full computer control (prograssabi & functi onwnrotor: DCq AC,
frequfncy, 'signal mode) end modular ae.loor configuratioli
suitod tar dynamical. rol am tion andlp:;..do'statical teat: with
:ompreasiofl. free sheer and tonsion lad.

2 th, ynoliaert a %out equipment for digitaltanasi of

loth devices have b on dovelo ed at the Catholic University of Leuven
and are nov comanrckalied by ergoug nan Benelux. Gant. lellgum.

a) DISPLAC99ENT & FORCE CONTROLLED TEST PROCEDURES:
In the first case, the vlsco-oeatic materisl In loaded witha

apecifIc strain load cyclol In the letter, the visco-oloatic material
ilp loaded with a specific streen load cycle. Due to the fact that
often large deformation. are involved when testing viscoetlastic
materils,. the Influence of the strain field of the element On the
reading wIll not be ne cible (am it Is the case for classical
materials). Treore* in order to oak# our* that %asptciic

deformation field on the tested moarial. the measuring procedure*

treated In this text IlIUXE 9VIE3j2 90 j irgin r90IL9& bigl.
b) DYNAM IC TEST:t

A1 dyn:Zmic tostoi defined am a *train controlled test with harmonic
IxcitatIon. The displacement is Imposed on the moving anvil, the
induced force I*se eaured on the fixed anvil.

c) RELAXATION TEST:
A relaxation test is defined an a strain controlled irpact test. The
disploacmnt is imposed in a small time lapse, the induced force Is
mesured duin a spcfctm eid uin arnd after the linal
strain level has been realised.

d) PSEUDO-STATICAL TEST:

pseudo-statical test is defined so a test with continuously
Increasinvarl load, applied with a constant strain velocity.
The shoec-f actor Is a coefficient, *xpresoin9 the degree of freedom
of a ru br element to deform freely when loaded in a specific way.

Teshe p-aco will therefore be dependent upon the load met-up.
f) SYSTEM-ELEMENT AND MATERIAL CNARACTERI1STICSi

When using a visco-oesatic msarial to design Isclators or deeper

the damping ratio of the sytom. Besides the dynanic propertion
(stiffness and damping) of the v*c- s I: elmnt t# qivln

mas of the system intervenws to determine the systemix behaviour.
The: natural frequeancy and the damping r atio areV called 0system
charectoristic:%Xwhilethe yai tinnes and dampiny properties
of the visco-etasti elmnt are Owelent charactarint ical. which

deend, not only upon the material used, but also uo h lnn

shape, the lad set-up, the static and othe dynamic load. It is
therefore quite imprtat to k~now the characterlatica of the
visco-eleatic element In some reference conditions and to expreus the
modification of it. properties due tn the working condit~ions. The
characteristics In reference conditions will be called loateril~s
characteristics*.

In this paragraph a general method will be denecribed oforeoptimluuihg a
spcific measuring tprocedure. This m~ethod will b usCed in next
pragraphs In order to develop the different measuring procedurwo which

will be treated.
1) what properties have to bp~ measured?

:nsweringtthis qu cation will result in an interpretation 
method anda

suited wethema I model.
2) what measuring condtoswl nlec these properties?

answering this :question will result in a *cries of relevant
( cont rol 1 blo) measuring conditions and a series of non-relevant
(non-controllabe measuring condition..

3) iplementation of astand rd measuring procedure 
which will elimitnate

the Influence of non-relevan (or non-controllable) meusuring
conditions.

4) redaction ofanly tical formulas which express the influence of the
different relevant me asu ring conditions.

5) check on the validity of the expressions redaction of limits of
validity.

A F- 3
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,5 I 'Ilcw ice

The propert1,a to, b mseavured
21re dyRu11Ci utifnev and

d* IP of it 'ubbps'r *. A lv.t
The 0o51 0hch . beat "suitoed
Ior chtracterinj them*

alpplnea *nd sInce it i"
gino ,"d..ly u(d (and-

1.ig. 5.1

5.2 Infuwncng measuring conditions

5.2.a. net-up
The met-up tAhe vwy hay an
element ia loaded) vii l
Importantly Influence the
reading,. For thi reaoon, the S,
:et-up lam to be chariacttrined . ..... ....
ccurattly and hea to bereproduaible for all materiamlsh ch Uroe included in the

teatpln.
Fig. 5.2. 5.3, 5.4 show the
three different set-u a for
dynamiC tests which v 11 be
treated, together with the InlfotiflcIIn. F/u
propertie vhich need to be - C + #c
moamured. X/H c c

A fig. 5.2

4.,,.i C (~/~s 2 k Ht
G0

kruniforfunctlem

fi . u c' • ; 'bgtX.) - =,

m Eg..3 fig. 5.4

.A 5.2.b characteriatics of the driving displacement
prestrain (pr) mean d ipincement / Initial height C 3
aoplitudo (am) , ntroke/(.*Initial height) I I
frequency (1) w 1/harmonic period (Hz)

IUO 1 3,

1 -Ill

fig. 5.5
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5.2.c strain hiutory
Due to the impoatant relaxation
phenomenon which In FA
characterltical for
Vieco-elantic materials, the fos.
dynamic stiffness and damping ,I
properties will var lame Ij .. p,,
when ivmaured continuoumly. 1o _ 1,_111 f I I
One the other hind, it 1 not 1allowed to toot th trt~t:rial "',**,,
until atabilimation oc rm in
Vue of the large "Iernal .
damping+ which ould" oue ,
conmequvntly Invoive a POP.----..+

temperature shift. Therefore, I

the standard meauring ' -j,
procedure will eliminate the
relaxation phenomenon
atatically, an shown an the
right hand graph. fig. 5.6

5.2.d shape Sactor S
The shape Inctor S vxprenaca
the degree of freedom -with
which a rubber element In ........................
allowed to deform freely when "W% M V Ilm
loaded in a apecif c way. The
shtpe factor wili therefore not
only depend upon the dimensiona-
of the element+ but alno on the
Specific load met-up (fig.
5.7).
It in defined am:

5.2.e influence of temperature
The temperature in a rubber element can vary an a consequence of twophenomena:a) p DeEM bL i-k l due to the lzrgz ifternal damping of

a:co-IamE10 materiaL a temperature change might occur in the
rubber elment while loadng. dynamically. Th i phenomenon in
non-controllabie (however meanurable) and therefore muot be eliminated
maximally. For thim reasan, the standard teat procedure will load the
t sted element with a minimal number of cycles. Once the
tran•ferfunction at a certain met of meaaurIng conditions ham been
meamured, it will the meanuriny procedure vill atop the dynamic load
and continue with another met of meanuring condltions.
b) 023enr bem1ngt when incorporating the tent set-up in a
tempera~re u am c er (avoiding all temperature gradienti)* one can
perform meaurements at temperature., different from ambient
emperature. The important influence of temiierature on dynamic

properties of viaco-eleatic materials In ve.l known. However,
determining this temperature influence accurately in still causing
problems from the point of accuracy of temperature control and tenting
speed.
In order to avoid theme problte, moat conatructorm if dynamic tenting
devicen with temperature controi limit the dimenoiona of the samples
thus allowing to implement amall, fat temperature chambers. H1ovever,
theme small ample dimensions will often have a devantating influence
on the reproducibility of the dynamic reading (influence of clamps,
anvils, internal machine damping, etc.). oreover, mont of thene
clanaical dynamic testing doviceo only operate in a limited range of
temperatures and frequencies.
For many yearn the clannical frequency-tempaerture trannformation.
have been implemented in literature and in practice to o-lycome theme
instrumentational problems. However the validity of these
frequency-temperature transformations can be queutionedi

" they are only valid for thermo-rheological nimple materialn; a
condition which limits the field of applications drastically.
For each group of then@ thermo-rheological moterialm name
constants are given, on basis of which the frequency-temperature
tranaformationa are implemented: a procedure which is doubtfull
in view of the viry broad ran e of materials involved (influence

o..processing parameter. on heae thermo-rheological constants

" the data which are available in literature do not show much
information on reproducibility: they are often plotted on
10garithmic scales (a technique which manks inaccuracies) and
only in a few can:, the validity of the trannformation (and the
validity of the used thermo-rheo ogical constants) in checked b
actually carrying out the dynamic readings for differencombinatin• of frequencies and temper turen.

AF-5
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The solution to all these probleom would be to develop a simple, fast
and accurate text for determining the dynamic propertien over the
frequency range of interest and to implement thin test-procedure in a
high quality temperature ohamber, Since moot (aechanical)
application, can be Ituated In a frequency range from 0 to 100 NzX
and a temperature range Irom -40oC to l70oC#. this would be the optima
range of operating conditions for uch a tet procedure:.
The presnted text will not deal with experimental date on the
influence of tempeTrature on the dynamic propertiea of viuco-elastic
material. The experimental data all wre obtained at a constant
ambient temperature However it will proove that relaxation testsKr!eent a lot more advant aem compared to d1namic test procedure.
ela (aton test wll1 here ore be much easier to Implement in a
teNperature chamber compared to classica dynamic teats. In fact the
Dynallmer device equipment haw been build Into a high quality
temperature chamber with a broad temperature range (-EOoC to l70oC)t
the relaxation mesauring procedure snov indeed a function perfectly
at varying temperatures with a high degree of high reproducblity an
accuracyI

5.3 implementat-(n of a standard mesuring procedure

5.3.1 notations
The dynamic .oduli at different (relevant) measuring conditions will be
no ted an followings

5.3.2 standard measuring procedure
I aetting the anvil at reference position (zero force level)
* setting the preatrain It I to 4 (4 levels of prestrain)
" elimination of relaxation phenomenon (fig. .6)
metting the ampl tude .s I to 4 (4 levels of Amplitude)
m etting the frequency ks I to A (S levels of frequency)
*meauring force and displacement during N cycles (N I 5)
ietting frequency <1 (intermediate frequency)

* calcustilon of the transferfunctlon
I :hck on the amplitude (measured am a net am?)
t check on the minimum force (for compression and tension)
u: xt frauncy
next ampi tude

to next preatrain
P4 * listing of 128 transferfunctions (tentperiod: 35')

5.3.3 example of listing

1 1. . N," ' 14 I#, a. .. ,

666t. CAI___ __.__1.-_
I~t 16 . e 6 .i6 6 .66 6 .. l 6.6 9.6 . t~l 6* 6- 6 6 *6 6l Ii . .I* . 6 6.96ItlI*

It It 1 . I h l 41 6 4-t11 $.of, I 04,, . .. ., . 6. , . e.' 6. 6 e.. ,, ..'"' , 614 .6 " I 0 .. . ... ... .... . . .. . ... 6.
,ce ec, I 66 I 

I 

6 46 6.6 61 ,10 II IIJ I
6, I,6 40,4 1. 4 114 . 1 . 16 , ::.i It . to66 1.". I 4% 6,64 a,6

6

66 1 .l4 6.66 6.t6 1. 1 I 1Aee . 1 IM W. 66m . 6.6 1 I,6 W. I, I,"c 6 6

6 " 6.6. ..e ,i66 ,i6. 6.6 6 ''" " Ii 6'' '' '6 * ... .6 .. t .6. 6 6 " 6"

I~II'
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5.4. redaction of analytical expreamuonm

it has born found that the inf1luence of measuring condltions on both

real and ben part. of the u.n.- ction (for all 3 met-upa) canml ndlmg~nmy trcll 
by :. tran-,, r ...

be expresmed analytlCally by runn* of 3 influence lunctlonat

0(Stpv) * M(f 0*W
12 3

In which

u,(S,pr) = element property : dependent of load slluation

v2(f) = material property: Independent of load sltuation

u3 (am) material property: Independent of load situation

ELEMENT INFLUENCC FUNCTION:

compsvisl: + (1+2S)pr
m (S,pr)- e (14 (1-pr)

- re, etwar
1 (S,pr) 1

lenhlon
(pr) - -

k1 1+pn

FREQUENCY INFLUENCE FUNCTION:

for all load situallons:

0([) 1+ I I)
2

AMPLITUDE INFLUENCE FUNCTION:

for all load situations:

v(an) - ( + e am
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general expreione:

%prMam. ' 0  9 4Spr) " u (om)• t,)

0- G" 01 Sps) = GOom)

,pr,om, f at El v(Spr) U2 (am) 9 o()

el0ment reference condlilons:
S = 0 pr= 0

material refersnc. conditions:
am >> f 0

validity of expreesions (limits of experimental plans):
* element shape.: cilindera cubes and beams with S<2

Sprentrain range: 0 --- > 2bXSmplitude ranges 0 --- > 10X

Irequency ranges 0 ---> 100 Hz
material ranges HR - SBR - EPDM - NnR and blends

With the same methodology ns for the dynamic test procedure (paragraph
5). thin paragraph will veal with relaxation tenta:

The property to be measurvd in as
the re lxat on modulus of a
rubber element, loaded in a
specific way. The model vhich
is beat suited for
characterizing this relaxation
modulus in the generalised
?axvell-model (fig.6.1) with a
continuous distribution of 7 X11
The trannferfunction of such a T

model for a atrain-controlled °m
impact test is a power function Fill
of time (fig. 6.1), in which
A, S and f aII are called
parametern of the relaxation
characteriotic' and show to be
dependent upon the used
meauring conditions (cfr.
references).

fig. 6.1
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6.2 Influencing measuring conditions

6.2.m met-up .
The set-ups, considered for
relaxation text& are ,--o-* .* .,.comprunlon (Sig. 5. 2).tenaion (fig. 5.4) and

Indentation load (fig. 6.2). -- " -
The Indentation load has # " • * *
several advantges compared to
the other load wituationm: readlnga on homo:nity

* simplier set-up f *. * ,o • i.0

fig. 6.2

6.2.b strain level
Depending upon the strain level
which hau been realised after Ih[)
impact, the relaxation modulus
Vwil be situated at different
levels.
FiY 6.3 shown different
re axation moduli at different
*train levels.

6
I 15L0 02 01. 06 06

fig. 6.3

6.2.c strain hitory
Due to the fact that the impact load cannot be applied immediately, the
influence of the di lacemen time Ta hoa to be eliminated analyticaly.
This is done by shifin? the relaxation modulus of a specific time
period, which a propor ional to the displacement time Tm.

-alfa
for displacement time Tm=Ost E(Tm a Os) a A * B t I
for displacement time Tm#Oxt E(Tm * Os) a A - B (t - OTm)

6.2.d shape factor
cir. paragraph 5.2.d of dynamic tests.

6.2.e temperature
No internal heat build up will occur since an impact test is concerned.
With re p ect at external heating, the relaxation modulus can be
curve-fitted on all temperatures (even at transient temperature) by
means of an the analytical expression mentioned above (pover function of
tire). The parameters of the relaxation characteristic will however
vary a. of function of temperature. f
This text will only deal with relaxation reading* at ambienttemperatures.

6.3 implementation of a standard measuring procedure

6.3.a notations

¢omprelon: 1(1) v A 4 1
c S.Pr SAW

.lnlw: E () A * I'
T T.pr T.pr

Indnon C()uaA .3 9

* AF- 9
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6.3.b standard aeauuring procedure* setting the reference (zero-force) position
*setting the strain level (linear displacement)
recording the lorce-varlatlon over 1 5ma time period

" curve-ilt of the relaxation force
" calculation of the relaxation modulus

(1 transferfunction per strain level)

6.4 redaotlon of analytical expressions

mA ILS~pr) 0 (1 + N/At)

A ;S.pr) ' (I + N/Ac )

-.tL . A • ° (S,pr) - (I + ,/A • t")

element reference condillons:
S = 0, pr 0

malaral reference condiflons:

validity of expression:

* element shape: cilindera, cubes and beams with S<2
. • displacement level: 0 --- > 20%

* material range: NR - SBR - EPDM - NBR and blends

7. CORRELATION DYNAMIC TEST - RELAXATION TEST

VKLAXATION WOUUS AT RKr2KC CULXNIrT PROPM

[(Q - A( I + R/Al')

DTI4AMAL MODULUS AT RU!MCNCC [LI140f P*Mf> M:

Sa -Ell. 4it")

In other terms: there is a unique relationship between the dynamic
moduli E'U() for varying frequencies, measured at reference conditions,
and the relaxation modulus Et), measured at reference conditions.
Both identities can be yielded analytically bymaking the time-frequency
transformation on basis of the generalised Maxwel -model (fig. 6.1)
(reference literature) and has been confirmed for extended experimental
lans, within the limits of validity which have been mentioned.

It has been proved that:

B/A * ,(2n)G a r(,-%)rf,/ *
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8. PSEUDO-STATICAL TESTS

With the name methodolog am used gor dynamic tesats and relaxation
r tumtu, it can be proveo hat for a pmeudo-staticml tel t m we with a
conotmnt velocity dx/dt. the relation between the meamured force F (x,
dx/dt#O onto) and the true otatical force F(x, dx/dtou mm/a) equals%

r M - r(X.dX/dti

-jX/d t
In which A, 3 and &If: equal the parameters from the relaxation
characteristio (ctr. par.

9. CONCLUSIONS

It hmm been proved that there im a perfect correlation belveen the
reading. o dynamic tests (dynamic moduli) and the reading* of a
relaxation tent (relaxation modulus) and of a pmeudo-statical teat
(force-dimp acement characterintic), on condit on that the dynamic and
meudo- ta .cm1 readingm are extrapolated to reference conditions.

Yn other term, the dynamic moduli and paeudo-mtatical characteristic o
simple shape elemento can be predicted by means of the relaxation
parameters A, 1 and algal
The relwxation teat et-up presents of a lot of advantages compared to
dynamic test and poeudo-aIcal testat speed, accuracy, Influence of
heat build-up, complwexlty of set-up, etc.
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SELECTED COMPLEX MODULUS DATA

Chris CHESNEAU
Bernard DUPERRAY

Soci6t6 HETRAVIB RDS
64 chemin des Mouilles - BP 182 -

69132 ECULLY CEDEX
,. (FRANCE)

ABSTRACT

In this paper, we present complex modulus Data for a series of materials
exhibiting interesting vibration damping characteristics. The measurement
equipment used is also presented.
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I - INTRODUCTION

The field of material characterization is relatively new and, in many cases,
nanufacturers of polymeric materials are satisfied with an incomplete set of
data when presenting their products. In the area of vibration damping, a cri-
tical piece of information is complex modulus, yet it is often forgotten by
manufacturers. For this reason, we provide herein complex modulus information
for a selected group of vibration damping materials.

Of course$ it is necessary to include in this paper the means by which this
Iitormation was obtained and a descriptive presentation of the test equipment
wilized is given as a prelude to the modulus master curves.

It - TEST EQUIPMENT

The bulk of the data presented here was obtained using ETLRAVIB's own VISCO-
RLASTICIMETER. Simply stated, this instrument measures the force and the
displacement acting on a sample submitted to an oscillatory regime. The schema-
tic diagram of figure I illustrates the basic mechanics of the instrument.
From the sample outward this diagram runs as follows. The sample is placed on
a rigid column, Lncorporating a force transducer, which links it to a fixed,
solid, metallic base. The sample is surrounded by a furnace, capable of tempe-
ratures of up to 350 0C using electric heating elements, and of temperatures as
low as - 100C obtained by liquid nitrogen cooling. The upper part of the sample
is attached to an electrodynamic shaker via a rigid column similar to the lower
one. The shaker is fastened to a fixed tipper chassis. The displacemenL of the
upper column is recorded by a transducer.

The height of the upper chassis can be adjusted, as well as the pre-strain on
the specimen.

Even though many different test heads exist, allowing characterization is shear,
3 point bending or the characterization of molten plastics, the materials pre-
:-ented herein were tested in simple tension-compression. The actual measurement
princkiple can now be described.

A viscoelastic sample has a dynamic stiffness K* defined by its response to
sinusoldal sollicitation

K F*
U*

where F* is the forcing function

F* = F0 exp i (Wt + 6) (2)

and U* the harmonic displacement

U* = U0 exp iwt (3)

The phase shift, 6, is linked to the vibration damping charucteristics of the
material and its tangent, tan 6, is often called the loss factor and denoted n.
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From equations (1) (3), the stiffness K* becomes

K*- (F0 /Uo) exp L6

The real and imaginary parts of K*, KI and K" respectively, are thus given by

K' F U0 1% cos 6

K" F0 /U0 sin6

The VISCOELASTICIKETER yields directly F0/U0 and 6.

YOUNG's modulus can be obtained using the dimensional parameters of the saoplo.
Using figure 2 as a definition dLagram, the following expressions of stress and
strain are obtained :

c* a U*/h

and a* - F*IS e

The magnetude of YOUNG's modulus is given by

o i t I~ 1

1 1* Se

where 1 + 2 ( L ) is a shape factor.

The real part of the modulus E', or storage modulus is given by i

E' -IE*I cosl

and the imaginary part, E", or the loss modulus, is given by

E" - IE*I sin 6.

The VISCOELASTICIMETER's technical characteristics are given in annex A. These
are accompanied by the VISCOANALYSER's characteristics, an upmarket fully auto-
mated version of the same instrument.

III - MATERIALS

There are so many materials in production exhibiting a vibration damping charac-
ter, or having a high loss factor, that some sort of criterion for selection had
to be used.

The first and most obvious one is that it belonged in our files. This means that
we have tested it. This reduces the number of available sources significantl)
and, in fact, we are mostly concerned here with materials of European manufac-
ture.

The next criterion is one of availability. These materials must be available to
the general public everywhere.
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Finally, we have chosen samples from various manufacturers wich exhibit a
variety of stiffness and temperature-frequency utilization ranges.

We have represented materials by master curves. Shift factors, storage modulus
and loss tangents are represented on separate graphs. These are shown in figures
3 to 9. They are, by order of figure

I - Spoxy resin, ref. EP 5020 with 10 % hardener ref. HY 956.

Address i S.N.P.E., Socitti Nationale des Poudres et Explosifs
12 quai Henri IV75181 PARIS CEDEX 04 (FRANCE)

Tel. (1) 42 77 15 70 - Telex : 220 356.

Figure 3.A % Shift factor V/S temperature and storage modulus V/S
reduced frequency.

Figure 3.B,: Loss factor V/S reduced frequency.

2 - Spoxy resin, ref. EP 5072 with 20 % hardener ref. HY 956.

Address t S.N.P.E., Socitt4 Nationale des Poudres et Explosifa
12 quai Henri IV
75181 PARIS CEDEX 04 (FRANCE)

Tel. (1) 42 77 15 70 - Telex : 220 356.

Figure 4.A Shift factor V/S temperature and storage modulus V/S reduced
frequency.

Figure 4. : Loss factor V/S reduced frequency.

3 - Refereuce : 11.112 A

Address : VIBRACHOC
12 route de Milly
91820 BOUTIGNY

Tel. (1) 64 57 90 56 - Telex : 600 415.

Figure 5.A : Shift factor V/S temperature and storage modulus V/S reduced
frequency

Figure 5.B : Loss factor V/S reduced frequency.

4 - Reference : 14/59 Al

Address VIBRACHOC
12 route de Milly
91820 BOUTIGNY

Tel. (1) 64 57 90 56 - Telex 600 415.
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Figure 6.A i Storage modulus V/S reduced frequency and shift factor V/S
temperature.

Figure 6.B : Loss factor V/S reduced frequency.

5 - XORSORKX

Address , CdF CHIMIE S.A.
DTpartement NORSOREX

Tour Aurore
18 place des Reflets
Cedex n* 5
92080 PARIS LA DEFENSE (FRANCE)

Tel. (1) 47 78 64 15 - Telex t 610 826

North American Agent

Address : Paul NELSON (ChemMark)
Factory Lane
MIDDLESEX
New Jersey 08846 (U.S.A)

Tel. (201) 469 7274 - Telex : 752 227

Figure 7.A : ShearModulusV/S reduced frequency and shift factor V/S
temperature.

Figure 7,B : Loss factor V/S reduced frequency.

6- FASSON ISOTACK

Address : AVERY INTERNATIONAL RESEARCH CENTER

325 North Albaden Drive
PASADENA

California 91107 (U.S.A)

Figure 8 : Shear Modulus and loss factor V/S reduced frequency
Shift factor V/S temperature.

7- SORBOTHANK S 50

Address : LEYLAND and BIRMINGHAM RUBBER COMPANY Ltd
Golden Hill Lane
Leyland, Preston PR5 IUB
Lancashire (ENGLAND)

Tel. 07724-21434 - Telex : 67126

Figure 9.A Storage modulus V/S reduced frequency and shift factor V/S

temperature.
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Figu re 9.B Loss factor V/S reduced frequency and loss modulus V/S
reduced frequency.

The VISCOELASTICIMETER is an instrument designed to study viscoclastic proper-ties of materials in the transition region where loss fact ors act large. One

cannot expect much accuracy below loss factors of 0.01. Thus for metallic

materials or glass plateau secondary transition peak* in the loss factor,

another HETRAVIB instrument is more appropriate. This instrument$ called

HICROHECANALYSER, is an inversed torsion pendulum.- working in forced oscilla-

tions below resonance. This can givo the instrument a vory wide frequency

range, from 10 5 Hz to 1 Hz. The general specifications are given in annex B,

along with a comparison of results obtained with bcth the VISCOELASTICIMTER

and the MICROHECAMALYSER (figures 10.A and 10.).
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Figure 1 . VISCOELASTICIMETEi Mechanical Section
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TESTKQUIPMENT

VISCOELASTICIMETERIVISCOANALYSER

OPERATING PRINCIPLE: FORCED OSCILLAIONS OFF-RESONANCE

GENERAL CHARACTERISTICS

VISCOELASTICIMETER VISCOANAILYSER

DIMENSIONS 2 m xIm 2,5m x Im

WEIGHT. mechanical frame 200 kg 200 kg

electronic cabinet 130 kg 200 kg

POWER REQUIREMENTS 220 V/5O - 6e Hz 220 V/50 - 60 Hz
1,5 kVA 2,5 kVA

CRYOGENIC SOURCE *liquid nitrogen liquid nitrogen

*(not included in the standard model)
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A 1EX B

XICROMCAXALYSER

GENERAL SPECIFICATIONS,

WITH VISCOELASTICIMETER/MICROMECANALYSER

COMPARATIVE RESULTS

Figure lO.A : Shift factor V/S temperature

Figure lO.b : Shear modulus V/S reduced frequency
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GENERAL SPECIFICATIONS

FREQUENCY RANGE: 10- 5 Hz TO I Hz

STRAIN RANGE: 0 TO 10- 3

TORQUE: 0 TO 1,5 x 10- 2 N.m

TEMPERATURE: 100 K TO 670 K

Au. . INTERNAL FRICTION RESOLUTION 10- 4

M.1

AG 26
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CRITIQUE OF COMPLEX M4ODULUS TEST METHODS

by

David I.G. Jones
Materials Laboratory (AFWAL/MLLN)

Wright-Patterson Air Force Base, Ohio

ABSTRACT

This paper represents a critical review of test methods and data
obtained for the complex modulus properties of damping materials. Brief
sunaries of the test techniques considered are followed by detailed
evaluation of the test data, with particular emphasis on processes for
evaluating the self-consistency of the test data and culling unacceptable
points. A summary of the usable modulus and frequency ranges of several
test techniques is given, based on the test data. Steps w:iich can readily
be taken to improve the reliability of test results are recommended.
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CRITIQUE OF COMPLEX MODULUS TEST METHODS

by

David I.G. Jones
Materials Laboratory (AFWAL/MLLN)

Wright-Patterson Air Force Base, Ohio

ABSTRACT

This paper represents a critical review of test methods and data
obtained for the complex modulus properties of damping materials. Brief
summaries of the test techniques considered are followed by detailed
evaluation of the test data, with particular emphasis on processes for
evaluating the self-consistency of the test data and culling unacceptable
points. A summary of the usable modulus and frequency ranges of several
test techniques is given, based on the test data. Steps which can readily
be taken to improve the reliability of test results are recommended.

1. INTRODUCTION,

Many test techinques have been devised to measure the complex modulus
properties of polymeric damping materials, each of which must be used with
great care to ensure that the test data obtained is reliable. In
particular, each test technique, for usual specimen sizes and types, has
its own particular frequency and modulus ranges within which the most
reliable results are obtained. Now that the data base of viscoelastic
damping material complex modulus properties is expanding rapidly, it has
become possible to review and compare data obtained from several sources
and by several test techniques, so as to quantify some of the limits of
test techinques. In this paper, such an evaluation is conducted for
several damping materials, and recommendations made.

2. PROPERTIES TO BE MEASURED/COMPLEX STRESS-STRAIN BEHAVIOR

The goal of most currently used test systems and methods for measuring
polymeric material behavior is to establish the relationship between stress
and strain in the time or frequency domains. The moduli ideally required
are the shear, extensional and bulk moduli. In the frequency domain, these
moduli are complex numbers, being functions of frequency, temperature,
cyclic strain amplitude and applied static load in addition to the specimen
composition and processing and storage histories. For any given material
sample, supposed homogeneous and isotropic on a macroscopic scale, the
shear, extensional and bulk moduli, and Poisson's ratio, are interrelated
in the frequency domain by the complex number generalization of the
classical theory of elasticity. Some of the relevant linear relationships,
for low cyclic strain levels are:
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o-"s = Gl+ iY)E s
G-e = E(1 + ile)Ee

E = 2(1 +V) G

S e

G, E,vL and v are functions of frequency and temperature, in particular.
For low cyclic strain levels the behavior is linear. The properties are
measured for particular samples by deforming specimens cyclically in shear
and extension and calculating G, E and q from the measured loads and
displacements. It is difficult to measure the bulk modulus K or Poisson's
ratio V but these can be inferred from measured values of E and G.

Many precautions must be observed in the measurement of E, G and
Specimens must be designed so that the mode of deformation accurately
reflects the parameters to be measured, so that effects of finite specimen
size, end effects etc. are reduced to a minimum. Tests must be conducted
in such a way that the extreme sensitivity to temperature of the material
properties is taken into account - this often means that specimens must be
soaked at the measurement temperature for extended periods of time, fifteen
minutes or more being not unusual. Efforts to reduce test time by sweeping
temperature at rates of several degrees a minute are usually
counterproductive, since thermal equilibrium is not obtained and the
measured data cannot readily be related to the supposed temperature.
Temperature sweep procedures may well be useful for othkr purposes, such as
monitoring curing processes, but they are totally unusable for accurate
complex modulus measurements. Other precautions must also be taken, on a
regular basis, including checking for non-linear behavior, noise and
distortion in the excitation and response electronic signals, dimensional
stability of the specimens, irreversible degradation of the specimen at
extremes of the test environment, proper identification and storage of
specimens for possible repeat tests, proper measurement and recording of
relevant specimen characteristics such as density, dimensions, composition
and processing (when known), test system settings when relevant, date of
the test etc. Proper recording and storage of the measured data, before
data processing, is an absolute necessity to ensure the possibility, at a
later date, of re-examining the test data for possible sources of
discrepancies and inconsistencies. In the absence of such records, data
may often be unusable at a later date.

3. TEST TECHNIQUES AND TEST SPECIMENS

Most measurement techniques used for determining damping material
stress-strain properties apply oscillatory, transient or random loads to a
specimen and measure the corresponding response. Differences in techniques
reflect the points at which loads are applied, the manner in which the
loads are measured and controlled, the points at which the response is
measured, the manner in which the response is measured, the magnitudes and
types of deformations induced in the specimen, the frequencies at which the
measurements are conducted and the particular sets of equations used to
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derive the required material properties from the observed btavior. It is

an implicit assumption that all methods of measurement, when properly used
on samples from the same material batch, will lead to equivalent
properties. To assume otherwise would be to admit the impossibility of the
measurement process. However, in practice, many sources of error exist for
each measurement technique and only the most careful evaluation of an
adequate set of measured data over a wide band of frequencies and
temperatures, even for materials exhibiting linear viscoelastic behavior,
can ensure that a reasonable level of confidence can bc placed on the
results.

Test techniques can be placed in four major groups; direct or resonant
techniques in the frequency domain, or travelling wave and relaxation
techniques in the time domain. These in turn may be further subdivided
according to whether shear or extensional properties are measured. Direct
frequency domain techniques are quite commonl used at the present time and
many commercial configurations are available [1-7]. Resonance techniques
may be used for simple specimens having uniform states of stress [8-11) or
for resonating beams with complex states of stress and several modes of
vibration [8,1.0,12,13) or a torsional pendulum with non-uniform shear
itress distributions II]. Relaxation and travelling wave technique are
usually conducted for simple uniform specimens.

,I. Figures 1 to 8 illustrate some idealized forms of the direct,
resonance, resonant beam, torsional pendulum and stress-relaxation test
configurations, and idealized indications of the types of response behavior
observed. Much has been written on the process of obtaining response data,

'.L and reduction of this data to obtain complex modulus properties, so the
descriptions given here will be brief.

3.1 Direct Techniques

Direct measurement techniques are those in which cyclic loads are
applied to a specimen and the resulting cyclic deforfmations are directly
measured in some way. Specimen deformation can be extension, shear,
torsion or more complex deformation patterns such as flexure. Figure 1
illustrates some of the possibilities. Commercial systems based on direct
measurement include the Autovibron [12], Viscoelasticimetre [3] and the MTS
systems [4]. A low frequency direct measurement system is described by
Whittier [5]. The stress-strain behavior is ideally represented by two
sinusoidal signals:

C= T Sin((at)

"= E Sin (ct + 0)0

as illustrated in Figure 2

The complex modulus is obtained from these observed signals by
trigonometric expansion of Sin (tit - 0) to give, in shear for example:
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o-. (1 + L) E(3)

G - o Cos 0,/ E. (4)

a tan 0 (5)

In the direct measurement techniques, it is important to ensure that the
1~. stress and strain signal to noise ratios are high. If, for example, the

load measuring transducer is designed to measure up to 5000 lb, and the
actual specimen loading forces are of the order of 10 to 100 Lb, then one
may expect inaccurate measurements and high electronic noise levels.
Equally, errors may be encountered in measuring specimen deformations, and
care must be taken to ensure proper choice of transducers. This means that
any given instrument, having given load and response transducers, will give
reliable data over a very limited range of values of the modulus 0 and a
limited frequency range, although the ranges may vary grom co~figuratign to
cogfiguration. The extreme range seems to be 1<G<10 Lb/in and 10 <f<
10 Hz, but any specific apparatus will cover only a fraction of this
range.

3.2 Resonance Techniques

Simple resonance techniques are those in which the viscoelastic
material specimen forms the resilient element of a single degree of freedom
system, which is excited harmonically at its resonant frequency [8,9).
Figure 3 illustrates some of the simplest possibilities. If the base of
the system is excited harmonically with acceleration amplitude A at
frequency,., then the amplitude A2 of response of the inertial element
behaves as illustrated in Figure 4 . The loss factorL of the material at
the resonant frequency er is determined by:

S1 IV(A2/A1)2 - 1 (6)

and the stiffness of the resilient element from:

k + ko = War (7)

The relationship between k and the specimen geometry varies with the type
of specimen. For extensional deformation, k = ES/h(I+AS /S ) where S is
the load-carrying cross sectional area and S is the non-lold carrying area
and 6 is a constant between 1.5 and 2. For 1hear deformation, k=2GS/h
where S is the load carrying area and h is the thickness. The resonancetechniques can give reliable results. but the range of frequencies and

moduli over which these results can be obtained is rather limited, ranging
typically from 100<f< 1000 Hz in frequency and 10<GK3000 Lb/in for
modulus, though other values can be accomodated with extreme effort. Few
commercial resonance systems are available, but simple configurations can
readily be built up, and are used most often for obtaining additional data
to supplement other techniques, or to examine effects of amplitude of
vibration. Other types of resonance test system utilize flexural
deformations of the specimen. One such setup, illustrated in Figure 3
is useful for determining complex moduli of stiff plastic materials or
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composites. A commercial flexural resonance system is the OuPont DMA
system (14]. In this case, the range of moduli and frequencies is still
narrow, but different from the simple resonance teclniquej, ranging from
about 1,f<1O0 Hz with respect to frequency and 1O<G<10 Lb/in with
respect to modulus.

3.3 Resonant beam techniques

The rescnant beam techniques are quite widely used for measuring
damping material complex modulus properties. Some of the most commonly
used beam configurations are illustrated in Figure 5. Properties are
measured in extension or shear, but the stress distribution is not uniform
so data is usually taken only within the linear behavior zone of a given
material. The beam techniques have been widely discussed elsewhere
(8,9,10,12,13], so we shall not go into details he.'e. Suffice it to say
that from measured response data, as ill4,trated in Figure 6, along with
similar data for the metallic or plastic supporting beam or beams, one may
deduce the modulus G or E, and the loss factor )2, at the discrete
frequencies corresponding to each mode and at the discrete temperatures for
which each test is performed. It is importunt to ensure that temperatures
are well stabilized and uniform throughout the specirmen and that errors and
magnification of errors which arise from poorly selected specimen
dimensions or too high or too low a material modulus be avoided.

3.4 Stress-relaxation methods

Stress relaxation generally gives modulus data in the time domain, but
the application of digital transform techniques to the measured data can
give moduli in the frequency domain. Some typical idealized test
configurations are illustrated in Figure 7. The strain increment is
aoplied to the specimen as suddenly as possible and the force measured by
cne force gage is a descriptor of the behavior of the material, once the
start-up transients have died away, as illustrated in Figure 8. Beyond
this zone, the stress can be represented as a function of time by [15]:

m(t) = A + B t" '."  (8)

The application of transform theory to this gives the complex shear or
Young's modulus (according to the test) in the forms:

14
G'(Qo) = A +JBO V(1-(1;(2)P(.(12) / 2r(1+j.)

.4 (9)
G"(ta) = o( B) r(1-c/2)(1+,!12) /2V(l+.)

These equations are valid only for small values ofco within the rubbery
zone of the damping material. Thus it is possible to determine complex
moduli, particularly at low frequencies -nd for moderate values of G or E,
in a fairly accurate and unambiguous way. Howiever, as always, care must be
taken to avoid errors, which include the transients, at short times after
applicatlon of the strain.
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4.0 DATA REDUCTION PROCESSES

4.1 Minimization of test errors

Ideally, all the masurement techniques used to determine complex
m.odulus prupertles of a specific sample of a damping material would
complemen each other and agree closely in numericel values. In the real
world, many scurces of error exist which are not always evident during a
ipecific test and many not come to light at all if great care is not taken.
Such errors may include errors of calibration in the test equipment,
discrepancies between indications of sensors (accelerometers, force gages
etc) and the true values of the relevant parameters arising from
deficiencies of the test apparatus used outsidd of its optimum range,
errors from too rapid sweeping of frequency in the case of sine-sweep
testing, errors from improper time-domain testing* and errors from too
rapid sweep rates of temperature. The temptation to sweep temperature at
rates of 1C a minute or more is often irresistible, yet it cai lead to
large discrepancies between indicated temperature and true specimen
temperature. Unless very special techniques are devised to reduce thermal
"inertia", only periods of up to 30 minutes to change temperature from one
setting to inother, along with temperature "dwells" of 15 minutes or more,
can ensure freedom from error in this most important respect. Rapid sviep
may be acceptable for some pu.'poses, such as following rapid chemical
:.actions, but is is not acceptabie for steady state complex modulus
measurements on stable materials.

4.2 Checking the self consistency of test data

Given that some '.,ror. will unavoidably remain, one must have some
"recipe" for culling )ut the errors remaining after all recognized test
errors have already bee-i eliminated. At present, the best way to
accomplish this goal is to examine the collected date on each given
material in the form of t'hree plots:

(a) Quadrature modulus (G" or E") versus direct modulus G' or E' for
all frequencies, temperatures and test methods, as illustrated in Figure 9.
[161

(b) Loss factor I versus direct modulus G' or E', as illustrated in
Figure 10.

(c) Plots of loss factor , direct modu',us G' or El, and quadrature
(loss) modulus G" or E" versus frequency at each temperature, as
illustrated in Figure 11.

Items (a) and (b) reflect the fact that, in the complete absence of errors,
G"(or E") and I should be unique functions of G' (or E') and all test
points should be near to this unique curve and be scattered randomly around
it, possibly in a normal distribution as illustrated in Figures 9 and 10.
Points which fall more than one standard deviation away from the mean curve
can be expected to be in error and should be "culled" from the data set.
Of course, this process does not identify the reason for the error and one
should, where possible, trace back to find that reason. Unfortunately,
most often the original test data is not available some time after a test
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program is complete, nor is it usually available to other users of the
data, so this may indicate that more careful attention should be paid to
recording raw data along with finished plots of complex modulus data.

Item (c) illustrates a very important point, namely that such plots
can be made only if the test data is recorded at common temperatures.
Again this ideal is rarely followed, the test temperatures used in one test
often being different from those used in another. Again, investigators
should ponder thi; point and perhaps take greater care to approach closer
to the ideal.

These three steps in the process of cleaning up the test data will
improve the data set. They are not at all infallible, since it is not at
all impossible to get consistent but wrong data. If the number of test
methods used is expanded (two or more methods) and the range of frequencies
expanded as far as possible (two or more decades), then the best results
will be obtained. Only then can one safely assume that low scatter is the
same as high accuracy. Spurious precision is always achieveable by

- ~' conducting only one test, using one test method, over a narrow frequency
range at each temperature, and this can be compounded further by sweeping
the temperature steadily but rapidly.

5. ILLUSTRATIONS

5.1 3M-ISD-112 [17]

The first material selected was an aerospace viscoelastic adhesive.
The material was evaluated by several of the test techniques reviewed
earlier, and available test data is summarized in Tables 1 to 8
[12,13,18,19]. Some of the test methods were used in conditions not likely
to yield accurate data, in order to establish limits, so some scatter was
expected. Figure 12 shows the plot of quadrature (loss) shear modulks G"
versus direct shear modulus G' for all the test points. The scatter is
evident, giving an indication of the usable range of modului for each test
method and specific configuration. The shaded band indicates the range of
usable data, though no effort was made to perform a precise statistical
analysis. Figure 13 shows the corresponding graph of loss factor ? versus
direct shear modulus G', again illuminating the acceptable and unacceptable
points. Figures 14 and 15 illustrate some plots of G' and 7? versus
frequency at specific temperatures. Unfortunately, common temperatures for
comparison between different test methods were not selected as carefully as
would have been desirable. Once the "smoothed" data was culled from the
total data set, it was possible to produce the usual graphs of modulus G'
and I versus reduced frequency as in Figure 16, and the corresponding
graphs of shift factor o-rversus temperature as in Figure 17 and versus 1/T
as in Figure 18. There is still some scatter, but there is no way of
reducing that except through additional testing with more care taken to
minimize all possible errors.

The shaded bands in Figures 14 and 15 represent the shaded bands in Figure16 transferred back to the particular temperatures.
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5.2 3M-467 Adhesive [17]

This material has damping and many mechanical properties which are
very similar to 3M-ISD-112, but the test data available has been obtained
by some different test techniques and over a much larger period of time.
The available data is summarized in Tables 9 to 14 [5,8,9,10,16]. Figure
19 shows the graph of quadrature (loss) shear modulus G" versus direct
shear modulus G', and Figure 20 shows the graph of loss factor versus
direct shear modulus G'. The scatter is less than for ISD 112 because the
test methods were used within their recommended range, so very little data
has to be culled. Figure 21 gives the plots of G' and I versus reduced
frequency, Figure 22 the plot of shift factor 4T versus temperature and
Figure 23 the shift factord T versus 1/T.

5.3 GE SMRO 100 F90 [20]

The third material evaluated is a space-qualified viscoelastic
material, stiffer than the adhesives and not self-adhesive. Again, several
tests were conducted to evaluate various test techniques; the results are
sumnmarized in Tables 15 to 18 [18]. Figure 26 shows the plot of quadrature
shear modulus G" versus the direct shear modulus G' and Figure 25 shows the
plot of loss factor y versus direct shear modulus G'. Figure 26 gives the
plot of G' and ' versus reduced frequency, Figure 27 gives the plot ofo(T
versus temperature and Figure 28 the plot of oT versus I/T.
5.4 Summary

The test results for the three materials evaluated give us some
insight into the effectiveness of each of the test techniques used. The
points which were accepted as valid, after the culling process described
was applied, cover a range of frequencies and shear modulus values. When
plotted as a graph of modulus versus frequency, a very clear Indication
emerges of the most effective range for each technique used. Figure 29represents this summary. It is seen that each technique, 1abelled (1)

through (9), has its own range of effective operation. Some ranges
overlap, some do not. While one may conduct measurements by each technique
outside of the range indicated, valid results can be obtained only with
extreme care and payment of full attention to specimen dimensions. For
example, the resonance techniques2 (3) are shown to be useful from 100 to
1000 hertz and G=10 to 1000 Lb/in . One can conduct resonance tests as low
as 1 Hz by making very massively loaded specimens but this requires
extraordinary efforts to avoid straining the specimen excessively, and
accelerometers would be difficult to use at such low frequencies because
the sigkaals are low. Similarly, at frequencies well above 1000 Hz,internal resonances in the specimen are difficult to avoid.

The studies so far have been limited to examination of particular sets
of data. Further efforts to examine additional data sources, such as in
reference [21], are needed. Also, efforts to apply these techniques to
other materials, including those having multiple transition zones, is
needed.

mrA
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6. CONCLUSIONS

This paper has shown that great care must be taken when conducting
complex modulus measurements on damping materials. After every effort has
been made to minimize experimental errors, further evaluation of the
numerical data are needed to establish the self-consistency of all the
data. This is done through plots of quadrature modulus and loss factor
versus direct modulus, and of modulus and loss factor versus frequency at
fixed, closely controlled temperatures. Finally, the remaining data, after
this culling process is complete, can be used to define the complex modulus
properties of the material as a function of reduced frequency, and to
create nomogram of properties as a function of frequency and temperature.
Examination of the results has also given a graphical definition of the
modulus and frequency range of useful operation of several test techniques.

Several specific recommendations concerning future measurements of
damping material complex modulus properties are particularly important:

(1) All tests should be conducted within the "useful range" of the
, '9 chosen test technique. Any points lying outside those ranges need to be

justified.

(2) All tests should be conducted at fixed temperatures, with the
temperatures allowed enough time to change from one test value to the next,
along with enough dwell time at each test temperature. No tests in which
temperature is swept should be used for property measurement, though the
sweep process may be allowable for other purposes. Furthermore, the fixed
temperatures should be the same for the different techniques used, so that
proper modulus and loss factor plots versus frequency can be made.

(3) The test techniques used should be selected to complement each
other. For example, a high frequency technique should be used inconjunction with a low frequency technique whenever possible.

(4) All test data should be culled of "non-self-consistent" points by
using the three plots of quadrature modulus versus direct modulus, loss
factor versus direct modulus and modulus and loss factor versus frequency
at varous temperatures.
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NOMENCLAI URE

A, B constants
A1  base acceleration

A2  Amplitude of acceleration of resonance specimen mass
b breadth of specimen
E Young's modulus
f frequency (Hz)
F, F1  driving force amplitude
F; shear force at base of vibrating beam

G, G shear modulus
GO' shear loss modulus
h thickness of viscoelastic material
hI  thickness of base beam

h2 Thickness of viscoelastic sandwich layer

k stiffness of specimen
ko flanking stiffness
L- length of specimen
Ni mass of resonance specimen
CL constant

temperature shift factor
change in length
strain

ES shear strain

Ee extensional strain

EO cyclic strain amplitude

0 phase angle
Gamma function
loss factor

Is Sshear loss factor

le extensional loss factor
stress

;-e extensional stress.I
es -S shear stress

6-0 cyclic stress amplitude
V Poisson's ratio _ TT

frequency
r resonance frequency
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Table 1 Sandwich Beam Test data for 3M-ISD-112 [18) x)

(= 7 in, h = 0.080 in, h2 = 0,005 in)

TEMPERATURE MODE FREQUENCY G' 2  G2 AC/REJ
0F(Hz) Lb/in Lb/in2

-45.6 -50 2 668.5 12734 .0409 520.8 r
1840.0 22837 .0302 689.7 r
3517.0 26144 .0342 894.1 r

5 5640.6 2744o .0390 1070.1 r
6 8211.0 31107 .0383 1191.4 r

-31.7 -25 2 660.0 9115.9 .2563 2336.4 a
3 1826.0 20301 .0549 1114,5 r
4 3483.0 23218 .1142 2451.5 r
5 5566.4 24317 .0591 1437.1 r
6 8084.8 27450 .0784 2152.1 r

-17.8 0 2 641.7 4687.7 .3905 1830.5 a
3 1732.2 8485.3 .2716 2304.6 a
4 3202.5 9145.5 .2781 2543.4 a
5 5014.3 10331.3 .0687 709.8 r
6 7395.1 13853.9 .2220 3075.6 a

3.9 25 2 631.1 3540.7 .4978 1762.5 a

3 1668.6 5449.6 .4336 2363.0 a
4 3113.9 7056.9 .4381 3091.6 a
5 4994.6 10016.0 .2201 2204.5 r
6 6764.1 7618.3 .4994 3804.6 a

10.0 50 2 600.0 1683.5 .7794 1312.0 a
S 1564.0 2773.2 .6331 1755.7 a

2840.0 4504.3 .6871 2407.8 a
5 440.0 46157 50 8 2334.6 a

6716.1 6798.8 :7397 4995.1 a

23.9 75 2 455.4 319.6 .8145 260.3 a
3 1139.3 464.8 1.0465 486.4 a
4 2060ol 470.4 1.7216 483.7 r

3351.9 811.6 .5961 483.7 a
6 4814.0 808.2 .7074 571.7 a

43.9 111 3 993.0 166.6 1.2994 216.5 a
4 1884.0 218.0 1.2729 277.5 a
5 3050.0 235.0 1.5497 364.1 a
6 4499.0 258.1 1.6608 428.7 a
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TABLE 1 (CORNTMItED)

TEPPERATURE N~ODE FREQUENCY G ACC/REJ

°C OF (Hz) Lb/in2  Lb/in2

51.7 125 2 353.2 55.4 1.423 78.75 a) 1

3 952.0 101.9 1.070 10 . a
4 1826.6 125.0 1.233 15.-0 a
5 3002.6 171.2 1.212 207.5 a

65.6 150 5 926.4 63.8 .894 57.0 a
1789.0 76.4 1.024 74.2 a

5 2943.1 89.2 1.186 105.8 a
6 4378.6 1o4.4 1.180 123.3 a

79.4 175 2 331.2 24.1 .840 20.2 a
3 909.9 42.3 .703 29.7 a
4 1764.8 48.2 .859 38.8 a
5 2904.3 45.2 1.169 52.8 a

93.3 200 2 326.0 17.2 .699 12.0 a
8g8.2 28.7 .559 16.1 a

17 7.2 27.3 .765 20.9 a

107.2 225 2 322.5 13.1 .524 6.8g a
891.3 22.4 .462 10. a .
1739.4 28.1 .530 15.3 a

5 2868.9 23.1 .844 19.5 a '
6 4281.3 27.7 .884 24.5 a

120.0 248 2 320.3 11.3 .455 5.15 a
882.8 13.5 .553 7.4 a

1724.2 13.3 .864 11. a
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Table 2 Sandwich Beam Test data for 3N-ISO-112 [13] (0)

(= 7 in, h h3 = 0.06 in,h 0.005 in)
"____'____ __ __AiCC/REJ

- TEI:PERATURE I ODE FREQUENCY G G 2 G2

°F (Hz) Lb/in2  Lb/in2

-31.7 -?5 2 503.5 7229,9 .144 1042.6 r
3 1362.0 18498 .184 3403,6 a

25'60.9 12079 .098 1178.9 r

-18.9 - 2 2 494.7 4762.9 .3o4 1449A8 r
3,1323.3 7066.5 .26 1869.8 r
Li. 2463.7 8172.0 :224 1833.0 r

--5.6 22 2 469.7 1664,3 o676 1124.7 a
3 1223.2 2955.2 .440 1300.0 a
4 2251.2 3727.7 .487 1815.0 a

4.4 40 2 426.9 693.7 .949 658.3 a3 1092.2 1267.7 .806 102815 a

10.0 50 2 401.6 450.3 1.117 502.8 a
3 1005.8 764.5 1,061 810.9 a

18.3 65 2 352.4 244.6 1.076 253.1 a
3 894.3 431.3 1,087 468.6 a

24.4 76 2 315.1 139.6 1.120 156.4 a
3 797.4 216.7 1.169 253.2 a4.,,.- 41488.2 281.2 1,375 386.6 a "

29.4 85 2 304.4. 118.7 1013 120.2 a
782.1 192.7 1.087 209.:* a
1471.1 262.4 1,198 314.4 a

37.8 100 2 284.3 79.1 9898 71.1 a
3 733.9 106.8 1.135 121.2 a

51.7 125 2 263.5 40.5 .908 36.7 a
3 708.9 68.7 .984 67.5 a
4 1369.9 106.1 801 85.0 a *-

- 66.7 152 2 254.3 26.0 .706 18.4 a
3 678.8 22:g 1.704, . 3 r
4 1344.8 70 .584 411 a

80.0 176 2 249.0 18.4 .612 11.2 a -
3 676.4 15.3 1.066 16.3 a
4 1331.5 57.2 .424 24.3 r

93.9 201 2 246.0 15.3 .473 7.23 a
3 673.3 21.6 .473 10.2 a
4 1321.4 49.4 .302 14.9 r
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Table 3 Five-Layer Beam Test data for 3M-ISD-II2 [19] ( ()

7 inh i = 0.062 _ _in (St), h2 = 0,005 in, h3 = 0.010 in (Al))

TEMPERATURE MODE FREQUENCY G I G " ACC/REJ
oO  OF  (Hz) Lb/in2  Lb/in2

- 34 -30 2 424 4224 .103 437 r
3 832 11300 .08g 964 r
4 1372 14900 .074 1109 r
5 2043 17300 .174 3010 a
6 2781 8332 .122 1016 r
7 3831 28980 .054 1566 r
8 4893 35710 .082 2922 r
9 6081 42983 .089 821 r

11 8913 55000 .091 4994 a
12 10477 58680 .091 5360 a

- 11 12 1 149.3 212 2.26 480 r2 423 2374 1.250 2958 r
827 6180 .612 3783 a
1361 9051 .40 703 a
2025 10768 .427 4602 a

6 2743 6114 .219 1340 r
7 3778 15019 .322 4837 a
8 4817 18100 .30 5516 a
9 5968 19600 .291 5711 a

10 7361 44700 .499 22300 r
11 8751 26130 .329 8600 a
12 10238 25700 430O 7827 a

5.6 42 2 414 1327 .573 760 a
3 814 3000 .562 1686 a
4 1332 3444 .575 1979 a
6 267 3400 .368 1287a-, 7 3574 3476 595 2068 a8 4717 7329 .866 6348 r

27 80 1 137.7 41 2.78 114 r
2 387 187 1.48 275 a
3 736 208 1.86 386 r4 1224 458 1.36 625 a* 5 1747 283 1.92 542 r
6 2464 3g9 2.98 1070 r to
7 205 6 3 1.10 697 a
8 4222 977 1.23 1203 a PI9 5162 712 1.92 1365 r

10 6318 1416 .750 1063 a11 7568 1423 .267 380 r

is_
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TABLE 3 (CONTINUED)

.TEMPERATURE MDE FREQUENCY G2 G ACC/REJ
0c OF (Hz) Lb/in 2  Lb/in 2

29 84 2 137 95 .64 61 a
3 382 205 .88 181 a
4 730 248 1.11 27 a
5 1194 366 .97 3 a
6 1754 383 1.17 449 a
7 2434 531 1.00 531 a
8 3242 575 ,92 531 a
9 4134 722 .92 664 a11 i 6138 671 .78 524 a

12 7514 1043 .98 1018 a

47 116 1 131 41.6 .94 41 a
2 364 94 .946 89 a V
3 696 105 1.19 126 a
4 1142 157 .936 147 aS5 1686 159 1. 07 171 a

6 2352 2 0 1.032 248 a
7 315 293 .855 250 a
8 4043 415 .793 329 a

10 6071 4g6 .890 408 a11.7575 15 .423 655 a

74 165 1 12g 18.5 .687 13 a
2 34 20 1.11 23 a
3 672 36 .877 31 a
4 1106 43 .885 38 a
5 1645 45 .959 43 a
6 2284 42 1.200 51 a
7 3078 154 .404 62 r

- 8 3944 133 .570 77 r
10 5961 178 .589 105 r

127 260 1 121 7.0 .059 0.4 r
2 337 5.0 .468 2.5 a
3 658 7.6 .613 4.7 a
7 3055 120 .146 17.6 r
8 3889 75 .266 20 r
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Table 4 OBERST Beam Test data for 3M-ISD-112 (A)

(,X= 6.625 in, h1 = 0.069 in, h2 = 0.064 in'

TEPERATURE r-ODE FREQUENCY G 2 ACC/REJ

C F (Hz) Lb/in Lb/in2

- 73.3 -100 1 51.7 128540 .067 8612 r
2 327.1 115840 .028 3244 a
3 917.0 117140 .030 3514 a
4 1789.6 115360 .034 3922 a

- 59.4 - 75 1 50.6 122000 .077 9394 r
2 323.3 107877 .033 3560 a
3 903.5 106070 .031 3288 a
4 1768.8 107120 .033 3535 a

- 46.7 - 50 1 48.2 832430 .108 89902 r
2 312.9 81787 .052 4253 a
3 876.8 82729 .051 4219 a
4 1708.6 80110 .048 3845 a

- 31.8 - 25 1 44.9 29820 .474 14135 r
2 297.0 45763 .199 9107 a
3 826.8 44390 .208 9233 a
4 1621.5 48857 .148 7231 a

- 17.9 0 1 43.5 511 18.96 9689 r
2 284.9 18741 .326 6110 a
3 802.1 25665 .344 8829 a
4 1574.6 31284 .276 8634 a

23.9 75 1 42.7 21512 .109 2345 r
2 274.8 887 .585 519 r
3 768.6 4412 .166 732 r
4 1498.7 6047 .204 1417 r

S.'
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Table 5 Rheometrics Mechanica' Spectroaneter data for 3M-ISD-112 [18] (+)

TEPERATURE FREQUENCY G22 G ACC/REJ22 12 G2

(Hz) Lb/in Lb/in i."

- 37 - 35 .0159 862.5 .336 306.6 r
#.159 1244.1 1 77 232.5 r

1.59 1499.6 .112 168.6 r

- 32 -25.6 .0159 435.6 .586 255.6 a• .159 82.7 •347 28.5 rL'

1• 59 1191•.7 •.189 225.1 r ,-
.15• 9 1482.2 •.163 241. 9 r .,,

- 27 - 17 .0159 175.2 .807 141.4 a
.159 438.6 • 537 235.5 r

1,59 807.7 .336 271.0 r
::.I15.9 1155.9 .243 281.4 r v

- 22 - 7.6 .159 250.3 .801 200.4 a

1,5- 524.6 .504 264.4 a15.9 1058.6 .380 401 8 r

37 1.4 .0159 105.4 1.152 121.4 a .2N
.159 375.5 .793 297.7 a

1.59 773.918 g 401.0 a
15.9 134.5 . 80 646.8 a

.17.6 0159 27.0 1.067 28.9 a

.159 90.9 1.136 103.2 a
1.59 322.8 .865 277.5 a":15.9 875.4 .472 413.1 r

S 26.6 .0159 17.0 .968 16.5 a
.159 .0 1.147 57.3 a

1.59 182.6 1.01 182.8 a
15.9 516.3 .793 42.6 a

0 32 .0159 1.9 .834 9.87 a
.159 32.0 1058 33.9 a

1.59 4.8 1.097 115.1 a:-'15.9 396.7 • 735 291.7 a

5\ 11 .01l59 8.9 M75 6.27 a
.159 1.7 .952 20.7 a1. 59 (-4.7 1. 138 73.7 a

15.9 232.6 .919 213.7 a

48 .0159 7.03 58 4.1ii a
:. .159 15.2 :88-9 13.4 a

1;,. .59 42.8 1. 107 47.4 a
= 15.9 160,7 .993 159.6 a

AI-41

V ;. ... . . . . . . . .. . ,-t

. . ... , - .,. ., • ,,¢ , , ,,,.. <; % :..',-, ',.' '-,v ,,A .,": ,,:. .'. . .:.-.. . ..... %[t:



TABLE 5 (CONTINUED)

TE:.:PERATLnUE FREQUENCY G2  72 2 ACC/RECJ

°O (z ) 'I Lb/in2

9 48 .0159 7.03 .585 4.11 a
.159 15.2 .884 13.4 a

1.59 42.8 1.107 47.4 a
15.9 160.7 .993 159.6 a

14 57 .019 6.21 .482 2.99 a
.159 12.0 .745 8.91 a

1.59 30.7 1.027 31.5 a
15.9 98.4 1.156 113.8 a

19 46 .0159 5.58 .393 2.22 a
.159 9.70 .641 6.21 a

15.9 68.3 1.173 80.1 a

23 73 .0159 5.29 .361 1.91 a
.159 8.75 .502 4.39 a

1.59 18.5 .848 15.7 a
15.9 49.6 1.lO4 5 .8 a

28 82 .0159 4.70 .300 1.41 a
.159 7.63 .4£43 3.38 a :

1.59 14.7 .749 11.0 a
15.9 36.4 1.078 39.3 a

33 91 .0159 4.66 .281 1.31 a

.159 6.65 .387 2.57 a
1.59 12.1 .691 8.37 a
15.9 29.3 .989 29.0 a

V"M
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Table 6 MTS Forced Vibration Test Data for 3M-ISD-112 [18] (V)

TEl PERATURE FREQUENCY 2  72 ACC/EJ

0c OF (Hz) Lb/in2  Lb/in2

- 17.8 0 .025 1O1.4 .286 290.7 r
.10 1975.1 .?50 493.8 r

1.0 5669.5 .182 1031.9 r
3.0 8130.( .189 1536.7 r
10.0 1?551.3 .153 1920.4 r

10 50 .025 ?1.4 .148 3.16 r
.10 42.1 .186 7.83 r

1.0 152.9 .957 39.3 r V.
3.0 2-38.0 .234 55.6 r
10.0 390.5 .141 55.1 r

37.8 100 .025 R.A4 .050 0.43 r
.10 10.2 .064 o.65 r

1.0 16.6 .11? 1.86 r
3.0 22.7 .122 2.77 r
10.0 35.0 .066 2.31 r

(5.6 150 .025 6.23 .0o48 0.30 r
.10 7.26 .o46 0.33 r '.

1.0 9.31 .050 0.47 r
3.0 0.8 .0 0 o.43 r

q3.3 200 .025 4.89 044 0.22 r
.10 5.18 .044 0.23 r

1.0 7.54 .043 0.32 r
3.0 8.38 .180 1 .1 r .

10.0 9.70 065 0. r

AI-43
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Table 7 DMA Test Data for 3M-ISD-112 [18] (0) ,s!

S2 2

o0  o (Hz) Lb/in Lb/in

-68 90 20.1 111964 .047 5228.7 a
~ - 4 -65 19.2 100507 .050 499 2 a __

--- 51 18.1 87309 064 561 •C a
-34 38 16.7 72371 .085 6151.5 a
3 - 29 15.2 59028 .116 6847.2

-30 - 22 13.5 45395 .165 7490,2 a
-25 -13 10.9 28861 •263 7590.5 a
-20 - 4 8.2 15953 .394 6285.7 a

*-15 5 58 7948 .521 4140.8 a
11 12 4.4 4423 .568 2512.5 a

- 9 16 3.8 3408 .562 1915.4 a
-8 17.6 3.6 3017 g63 1698.4 a
- 3 26.6 2.6 1552 . 37 678.2 r
- 1 30 2.2 1098 .297 326.1 r
0 32 1.9 863 .164 141.5 r

1 34 1.8 744 •o46 34.3 r
5 42 1.8 719 .048 34.3 r -

Table 8 Autovibron Tests on 3M-ISD-112 [18] (o)

TErPERATURE FREQUENCY G2 2 L/ ,/,

,0C OF (Hz) Lb/in2  Lb/in2

- 46.8 -52 110 24593 .037 909.9 r

- 21.8 - 7 110 15059 .195 2936.5 a

- 17 1.4 110 11390 .298 3394.2 a

- 14.4 6 110 9461 376 3557.3 a

AI-44 ' "
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Table 9 Shear Resonance Test data for 3M-467 [8,9] (x)
L L

o= 0.93 in, h = 0.099 inju 1.25 in, Various values of M)

TENTEPRATURE FREQUENCY G G ACC/REJ12 2
°C OF (Hz) Lb/in2  Lb/in2

100. 50 .22 1560 .804 1254 a
14.4 58 627 905 .94o 851 a
16,1 61 523 630 .980 617 a
17.2 63 510 600 .970 582 a
21.1 70 1067 750 .860 645 a

22.8 73 377 329 1.180 388 a
23,3 74 539 365 1.170 427 a
-23.9 75 501 318 1.220 388 a
25.0 77 724 348 1.200 417 a
27.2 81 737 360 i.280 461 a

27.2 Ri 417 220 1.280 282 a
28.3 83 272 171 1.250 214 a

605 240 I.26o 302 a
28.9 84 588 228 1.380 315 a

346 152 1.150 175 a

30.6 87 499 165 1.510 249 a
31.1 88 324 127 1.150 146 a
32.2 90 477 150 1.380 207 a
3?.8 91 478 152 1.460o 222 a
34.4 94 258 85 1.290 110 a

34.4 94 403 107 1.380 148 a
37.2 99 259 85 1,200 102 a
37.8 100 211 56.o 1.070 6o.o a
38.9 102 143 47.0 1.400 54.0 a
43.3 110 319 67.0 1.400 94.0 a

55.0 131 94 20.5 .910 18.7 a
57.2 135 117 17.4 .885 15.4 a
58.3 137 184 22.5 1.120 25.2 a

AI-45
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Table 10 Shear Resonance Test data for 3M-467 [8,9] (4)

(15 layers, h = 0.0024 in x 15, b = 0.88 in,L= 1.27 in)

TEi2'VPERATURE FREQUENCY G2  2 G2 ACC/REJ

C F (Hz) Lb/in2  Lb/in2

17.8 64 915 750 .700 525 a
22.8 73 1118 652 .810 528 a
23.3 74 804 582 .900 24 a -N
23.9 75 770 530 .880 66 a
27.8 82 1337 491 .910 447 a

28.3 83 634 360 .850 306 a
33.9 93 757 298 .940 280 a
35.0 95 483 188 1.000 188 a
40.6 lO5 438 171 .880 151 a

47.2 117 38 104 .960 100 a
435 94.o .950 89.3 a

49.4 121 323 93.0 .700 65.1 a
583 94.0 1.050 99.0 a

57.2 135 234 +9.0 .760 37.0 a

(0.0 140 274 39.0 .760 29.6 a
60.6 141 443 54.o -460 46.4 a
61.1 142 259 60.0 V270 40.2 a

AI-46

% .

S. • -

'. .%'. "w , .wm% ' i .
. W ' ,.W * W> ' -h ~ ', ' ' ' , ' - - , " z " ' ' ' .. , ' m - ' ' ' "

"'- . " ... -"-" -'" " ' " " ,' ":



I.'..

3 Table 11 Sandwich beam test data for 3M-467 [13] (o) "-

(hI, = 0.070 in, h, 
= 0.008 in,,,/- = 7.00 inj I2

TEVPERATURE lp %ODE FREQUENCY (': 2G2 "CC

°C OF (Hz) Wbin 2  Wbin 2  J

-31.7 - 25 2 (100.0 11336 .107 1213 r
3 164g.0 29608 .085 2517 a

3 1609.0 17521 • 335 5869 a [,

-3.9 25 ' )37,0 1954 .803 1569a

3 397.0 3581 .825 2954 a
4 2521.0 4100 992 4068 a !

-"18.9 66 2 414.o 369 1.495 552 a
; •3 1042.0 801 .905 725 a

23.9 75 2 374.0 236 1.470 347 a

4o 104 2 313.0 71.5 1. 610 11 I1 a
3 854.o0 189 1. 028 199: 4 1629.o 251 1.076 270a

' 2645.0 359 .916 329 a

Tal 51.7 125 296. 33.0 .394 46.0 a,

S804•0 63.3 1.280 81.0 a ,,

56.1 133 299.0 40in9 I,375 56.3 a ,

• 00 814.o 91.0 • 987 89.8 a4PR 1572.0 116 1.93 127

5 2583.0 219 765 168 a

.167.2 153 2 293.0 28.1 1.07? 1213 a
3 698.0 54.9 .916 503 a

"395 2550.0 148 .622 92.1 a
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Table 12 Sandwich beam test data for 3M-467 [12) (+)

TEPPERATURE IVDE FREQUENCY G 12 G2  ACC/REJ

c OF (Hz) Lb/in2  Lb/In2

-18.3 -1 2 1510 13890 .171 2375 r
02 23700 .163 3863 a

2g?99 ?9080 .166 4827 a
5 4380 31870 .155 4940 a

- 3.9 25 3 1368 10880 .333 Z623 a
4 2605 13850 .328 .543 a
5 4188 17210 .343 5903 a

10 50 2 477 2275 .644 1465 a
1280 405 .723 2896 a
2388 5132 .744 3818 a

5 3742 5494 .878 4824 a

23.9 75 2 423 629.6 I.063 669.3 a
3 1097 1201 1.025 1231 a

30.6 87 2 390 375.2 1.213 455.1 a
3 988 677.9 1.177 797.9 a

37.8 100 2 319 144.7 .27+ 184.3 a
4 1526 383.1 1.325 507.6 a
5 2 44 447.7 1.350 603.9 a

44.2 112 2 329 168.7 1,24 211.5 a
3 833 280.01.340 375,2 a
4 3 384.5 1.317 506.4 a _

5 2 1 445.7 1.44o 641.8 a

51.0 124 15. 1.220 141. a
1.209 198.6 a

5 2302 228.0 1.167 266.1 a

65.6 150 2 262 39.3 .916 36.0 a
700 57'5 1.091 62.7 a

4 1)56 89.0 1.009 89.8 a
5 2235 131.7 .938 123.5 a
6 3326 147.6 1.139 168.1 a

79.4 175 2 254 27.4 .812 22.3 a
3 685 28.8 1.297 37.3 a
4 1335 62.6 .932 58.3 a
5 2208 104.6 .683 71.4 a

3294 116.5 .840 97.9 a

AI-48
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TABLE 12 (CONTINUED)
__ _ _ __ _ _ _ _ _ __ _ _ _A C C /R E J :

TEKPERATURE ,ODE FREQUENCY G2 G2

0 F(Hz) Lb/in2  Lb/in2

93.3 200 2 248 18.8 .742 13.9 a
4 1325 54.2 .591 32.0 a
5 2188 87.1 .488 42.5 r
6 3267 107.0 .535 57.3 r

109 225 2 245 15.0 .577 8.3 a
3 670 20.4 .698 14.3 a
4 1308 35.3 :542 19.2 a
5 2165 52.8 .94 26.1 r
6 3237 87.4 .353 30.9 r

120 248 2 242 12.7 .507 6.4 a

3 664 15.9 .622 9.9 a
4 1297 27.7 .480 13.3 a
5 2145 52.7 .356 18.8 r
6 3213 82.7 .283 23.4 r

/4 :4
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Table 13 Fitzgerald data for 3M-467 [5) (ti)

TEV,PERATURE FREQUENCY G G ACC/REJ
C OF (H) Lb/in Lb/in

25 77 46 118 1.24 146 a 1
?8 147 1.28 188 a
90 164 1.38 226 a110 185 1.38 255 a

31 87 20 33 1.00 33 a25 40 1.04 41.6 a
4g52 1.11 57.7 a

59 1.15 67.9 a98 71 1. 81.7 a117 80 1.15 92.0 a
31 88 20 31 1.o4 32.2 a

25 36 1.07 38.5 a45 52 1.15 59.8 a
64 58 1.15 66.7 a80 64 1.15 73.6 a98 70 i.15 80.5 a

110 72 1.19 85.7 a
120 74 1.19 88.1 a

Table 14 Cyclic Shear test data for 3M-467 [5] (A)

'.AC!REJA 
,

TE,:PERATURE FREQUENCY G2 12 G 2 _______

°C F (Hz) Lb/in2  Lb/in2

24 75 0.1 3.8 .466 1.8 a
3.0 23.9 .913 21.8 a".0 3235 5 a9.0 U1.0o6 1.5 a12.0 .3 .910 4o.3 a

15.0 50.0 .966 48.3 a

Al-50 I'
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Table 15 Sandwich beam test data for GE SMRD 100F90 (18] (x) 'c 'e

(h - h 0.080 in, h2 = 0,039 in, L 7.0 in)

TEPERATURE 1,0DE FREQUENCY G2  2 G2 ACC/AJ

oc  OF (H) Lb/n /in 2

- 1.7 -25 3 2257 8544+0 .016 1359
4 13 96210 .017 166 a

5 687 103800 .021 2149 a
6 9141 110200 .020 2216 a

- 19.4 -2.9 2 836 66oo .o44 2911 a _

5 6427 99740 .042 4159 a6 9029 104700 .033 3475 a
- 3.9 25 2 830 61030 051 3131 a

3 2212 76880 :249 19170 r
4096 90240 .024 2202 a

6 6380 96740 .020 1915 a6 8917 99160 .026 2608 a

10 50 2 827 59310 .077 4537 a
3 2169 66790 o06 3707 a

3990 7516o .049 3668 a
5 6164 79830 .04 5744 a
6 8624 84410 .05 4550 a

23.9 75 2 759 190i40 .087 1653 r
2039 39480 .146 5753 a3721 48140 .180 8669 r

5 5709 53160 .195 10370 r6 7926 56840 • 173 9838 r 1.
39.4 103 2 708 8407 .763 6414 a

3 1828 17200 .656 11290 r6 6682 2722 .303 8234 a

51.7 125 2 551 3273 .216 708 r
4 2365 5479 1.011 5540 a

65.6 150 2 46c 1509 .329 496 a
3 1113 2099 .324 680 r
4 1988 2208 .693 1529 a
5 3144 2432 .763 1856 a
6 4571 2646 1.026 2714 a

79.4 175 2 433 1168 .172 201 a
3 1036 1384 .286 396 a
4 1881 1413 .385 545 a5 2995 1400 .512 716 a

4391 1489 .387 577 a

AI-51
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TABLE 15 (CCTINUED)

2 ,O(1{N) Lb/in2  Lb/in2

93.3 200 ? 4.0 1020 .107 109 a
3 1009 1171 .1(-4 192 a

. -
18 91 1 ° 2 42 2 a 1 4

2949 1063 .196 208

AI-52
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Table 16 DMA Test Data for GE SMRD 100F90 [18) (0)

TEMPERATURE FREQUENCY G G CC/REJ

2 12 2 ~.~

0 °. (Hz) Lb/in2  Lb/in

- 68 - 90 23.4 42990 .033 141r
- 63 - 81 23.3 42800 .033 r
- 58 - 72 23.2 42020 .034 1446 r
- 53 - 63 23.0 41300 .037 1528
- 48 - 54 22.8 40380 .040 1599 r

- 43 - 45 22.6 39360 .041 1610 r
- 39 - 38 22.4 38440 .o42 1607 r Iw
- 35 - 31 22.2 37670 .043 1609 r
- 30 - 22 22.0 36850 .o43 1573 r
- 25 - 13 21.8 35980 .043 1547 r

- 20 -4 21.6 25110 .044 1538 r
- 16 3 21.4 34430 .045 1539 r
- 12 10 21.2 33660 046 1562 r
- 8 17.6 21.0 32980 .049 1629 r
- 6 21 20.9 32550 .052 1683 r

- 4 25 20.8 32060 .055 1747 r
- 2 28 20.6 31530 .058 1826 r
0 32 20.4 30850 .063 1944 r
2 35.6 20.2 30030 .070 2093 r
5 41 19.7 28340 .085 2417 r

8 46.4 19.1 264 0 .104 2751 r
10 50 18.8 25240 .127 3206 r
12 53.6 18.3 25740 .163 3870 r.
15 59 16.9 19880 .247 4909 a
18 64 14.9 14750 .387 5708 a

20 68 13.1 11170 .518 5786 a
23 73.4 ,0.1 6335 .761 4821 a
25 77 8.2 41l .881 3613 a
28 82 6.4 2331 .930 2168 a IM
30 86 5.6 1760 .876 1542 a

33 91 4.5 1040 .721 750 a ,, ,.,
35 95 4.0 783 .603 472 a __

38 100 3.5 561 .443 249 r
40 104 3.3 468 .341 160 r
43 109 3.1 375 .193 72.3 r .

45 113 3.0 332 .102 33.9 r
46 115 2.9 316 060 18.8 r

AI-53 -
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TabM e 17 Autovibron Test Data for GE SHRD 10OF90 [18] (v)

TEMPERATURE FREQUENCY G I o 0 /

oC Or(.iz) Lb/in 2  Lb/in 2

3.0 37 110 32510 .021 683 r
1,8 55 3050 .063 1918 r
13.6 59 2O0O .044 1232 r15.o 59 2947 .043 1267 r
18.7 66 26030 .157 4086 r

71 23290 207 4821 r23.7 75 19820 :274 5431 a25. 78 18970 .2A6 5424 a
27. 81 12910 .392 6002 r
P.9.4 85 1 430 .294 4244 a

31.2 8F 10860 .483 5246 a33.1 92 8666 .552 4784 a
35.0 95 7292 .599 43 (8 a36.9 98 5634 .658 3707 a
38.9 102 3956 .793 3137 a

40.7 105 3396 .755 2564 a42.5 109 3102 .701 2174 a4L..5 112 1970 .810 1601 a
46.3 115 1894 .762 1443 a
48.3 119 1487 .738 1097 a
50.1 122 1457 .615 896 a
52.1 126 1238 .575 712 a
53.9 129 1136 .715 812 a55.8 132 1158 .424 490 a
57.7 136 981 .374 367 a
60-5 141 952 .396 3 a

62.3 144 827 .525 434 a64.3 148 1230 .290 357 a
71.8 161 704 .244 172 a
74.6 166 913 , -66 152 a
78.3 173 767 .194 149 a

- 25.6 - 14 35 29160 .005 146 r- 10.9 12.4 32240 .013 419 r .-:

0.2 32 31960 .038 121 r
4.4 40 29180 .030 875 r
10.3 50 26590 046 1223 r

12.1 54 26960 .o67 1807 r13.9 57 25530 .141 3599 a
157 620330 .163 3314 a
17.5 64 20240 .330 6679 a
19.3 67 18250 .329 6003 a :lk
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TABLE 17 (CONTINUED)

TErPERATURE FREQUENCY 02 ACC/REJ
°c OF (Hz) Lb/in2  Lb/in2

22.3 72 35 1A50 .378 621? a
25.2 77 13180 .1? 6815a
27.0 81 10500 40 5147 a
29.0 84 8293 .675 5598 a
30.9 88 6504 006 4007 a

32.7 91 46S93 .795 3731 a
31. 9 9P 3618 .786 2844 a
3(.5 98 2657 .928 2466 a

103 1971 .852 1679 a
zl: 3 10i 1640 .778 1276 a
43.2 110 1457 .710 1034 a

52.5 127 859 .655 563 a5*.It 134 85 .343 293 a
4O.1 )jl 888 .216 192 a
(2.9 145 813 .263 2.4 a

A. 7 152 740 .20 154 _
70.7 159 728 .114 83.o a

AI-55
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Table 18 HTS Forced Vibration Test Data for GE SHRD 100F90 [18J (o)

TE,.PERATURE FREQUEt;CY G 2 ACC/REJ

Or. 2, 25

°C (Hz) Lb/in Lb/in2

10 0 .025 13710 ,199 2729 a
. O 930 .122 2362 a

L. 30490 .049 1494 a
3.0 33560 .015 503 r10.0o 30540 .071 2168 a

37.8 100 .025 726 oo0 6.5 r.I0 743 o013 9.6 rL.o 8 C7.

41.3 r
(5.6 150 .025 620 .00 3.1 r

.10 643 oo 2.6 r
1.0 636 .005 3.2 r
3.0 639 .028 17.9 r
10.0 653 .128 83.6 r

tob

93.3 200 .025 579 .006 3.5 r
.10 ;-85 .007 4.1 r
.o 593 .005 3,0 r3.0 599 .031 18.6 rV

10.0 603 .135 81.4 r
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HUBBLE SPACE TELESCOPE REACTION WHEEL ASSEMBLY

VIBRATION ISOLATION SYSTEM

L. P. Davis, J. F. Wilson
Sperry Corporation

Aerospace & Marine Group ,
Phoenix, Arizona 85036

R. E. Jewell
National Aeronautics and Space Administration

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

J. J. Rodn"-
Lockheed Missiles and Space Co., Inc.Space Systems Division

Sunnyvale, CA 94086

ABSTRACT '.

The Hubble Space Telescope features the most exacting line of sight
jitter requirement thus far imposed on a spacecraft pointing system.
Consideration of the fine pointing requirements prompted an attempt to
isolate the telescope from the low level vibration disturbances generated
by the attitude control system reaction wheels. The primary goal was to
provide isolation from axial Component of wheel disturbance without
compromising the control system bandwidth. At Sperry Corporation, a
passive isolation system employing metal springs in parallel with viscous
fluid dampers was designed, fabricated, and space qualified. Stiffness
and damping characteristics are deterministic, controlled independently,
and have been demonstrated to remain constant over at least five orders
of input disturbance magnitude. The damping remained purely viscous even
at the data collection threshold of .16 x 10-6 in input displacement, a
level much lower than the anticipated Hubble Space Telescope disturbance
amplitude. Vibration attenuation goals were obtained and ground test of
the vehicle has demonstrated the isolators are transparent to the attitude
control system.
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ABSTRACT

The Hubble Space Telescope features the most exacting line of sight jitter
requIrement thus far imposed on a spacecraft pointing system. Consideration of
the fine poiiting requirements prompted an attempt to isolate the telescope from
the low levei vibration disturbances generated by the attitude control system
of wheel disturbance without compromising the control system bandwidth. At

Sperry Corporation, a passive isolation system employing metal springs in
* parallel with viscous fluid dampers was designed, fabricated, and space quali- V

fled. Stiffness and damping characteristics are deterministic, controlled
independently, and have been demonstrated to remain constant over at least five

* * ,orders of input disturbance magnitude. The damping remained purely viscous even
at the data collection threshold of .16 x 10-6 in input displacement, a level
much lower than the anticipated Hubble Space Telescope disturbance amplitude.
Vibration attenuation goals were obtained and ground test of the vehicle has

* demonstrated the isolators are transparent to the attitude control system.

INTRODUCTION

The Hubble Space Telescope (hST), shown in Figure 1, provides an optical I

- image for five scientific instruments and three Fine Guidance Sensors. The
vehicle is approximately 44 feet long and weighs 24,000 pounds. It is designed
for STS insertion into a circular orbit of 320 NM for a 15-year mission. On-
orbit maintenance and new technology upgrades during the mission are antici-
pated. To preclude the possibility of contamination of the optical elements no
chemical reaction propulsion systems are onboard. Attitude control is provided
by the Reaction Wheel Assemblies (RWAs) and the magnetic momentum control
system. Reboost following orbital decay will be provided by the orbiter.

POINTING CONTROL SYSTEM

The primary elements of the Pointing Control System (PCS) used for fine
pointing are the digital computer, reaction wheels, magnetic momentum system,
rate gyro complement, and two of the Fine Guidance Sensors. Pointing torques
are applied with the RWAs. The magnetic momentum system is used to desaturate
the RWAs and minimize the wheel speed excursions. The four RWAs are positioned -with their spin axes inclined at 20 degrees to the telescope optical axis as in

Figure 2. Two RWAs provide torque along the pitch and roll axes and two provide
torque along the yaw and roll axes. The array is thus redundant in tliat it can 'i-
provide c~ntrol at reduced capacity following the loss of any one RWA. Addi-
tional coarse pointing attitude information is available from fixed head startrackers and sun sensors. Finally, a backup control system with backup rate

gyros is provided for increased mission reliability.
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HST pointing accuracy and stability are defined in terms of Line Of Sight
(LOS) error of the principal ray at the final imaging element, which includes
the errors from all the optical elements in the path, Jitter predictions
involve modeling of the disturbance sources, the HST structural transmissivi-
ties, and ray tracing between the various optical elements. The HST image
stability requirement for periods up to 24 hours is .007 arcsec rms. Thisrequirement is also to be maintained in any period as short as 10 seconds, which
limits the averaging of short duration disturbances. The HST pointing repeat-
ability requirement for periods up to 100 hours is .01 arcsec. Pointing perfor-
mance of a satellite at these levels has not been previously obtained. LOS
jitter sources include random sensor noise, coherent sources due to rotating I'
machinery, thermal gradient effects, and residual transients due to recent large
amplitude maneuvers. Since the RWAs are the most massive rotating machines
onboard and must be operated continuously during science acquisition they
received considerable attention in the Jitter reduction effort. Jitter models
indicated that the LOS was most sensitive to axial RWA disturbances owing to the
vehicle configuration.

REACTION WHEEL INDUCED VIBRATION

An RWA produces vibration disturbances when it rotates due to imperfections
in the electromagnetics and their drive electronics, unbalance of the rotor, and
imperfections in the spin bearings. In the case of the HST RWA, the electro-
magnetics and electronics were designed to produce negligible disturbances
relative to the latter sources. The rotors were balanced to the point that the
unbalance was at least as small as and indistinguishable from disturbances due
to geometric imperfections in the spin bearings. The bearing geometry distur-
bances occur at many harmonics of wheel speed, and balancing alters only the
once per revolution harmonic, so further improvements in balance are unproduc-
tive. The '--ing geometry disturbances were minimized through the use of
bearings _. . ly perfect geometry (equivalent of ABEC 9) and by selectively U
matching the bearings for lowest net disturbance. This procedure is thought to
result in state-of-the-art vibration reduction.

Some of the lower frequency first order disturbances are shown in Figure 3.
These are the maximum, average, and minimum force levels for the five flight
RWAs and the engineering unit while running at 1500 rpm. Also shown is a table
summarizing the sources of these harmonics. In the HST bearing the ball groups 1!
rotate .35 times as fast as the rotor so harmonics of 1.0, .35 and their differ- 6,;

ence occur.

In Figure 4 measured data is shown for the axial force at once per revolu-
tion as wheel speed is varied from 0 to 3000 rpm. Also shown is the least
square curve fit to the data based on the assumption that force is proportional
to the square of wheel speed. A similar correlation with wheel speed squared is
found for other harmonics at frequencies below the first resonance of the RWA
and test fixture. This correlation suggests that at low frequency the distur-
bances have the form f = MA(NW)2 where f is the disturbance force, M is the mass all:
of the rotor, A is the geometrical runout in the bearing, N is the harmonic
number, and W is the wheel speed. Using this assumption, A for each harmonic
may be determined in the least square sense. This was done for the flight units
and is tabulated in Figure 4. Since the predicted geometry errors are within
the bearing specification and are not practically measurable this model of the
bearing disturbance was accepted.
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VIBRATION ISOLATION SYSTEM

The nature of the RWA vibration disturbances is that there are many har-
monics, sweeping a wide frequency range as wheel speed is run up and down, with
amplitudes increasing as the square of speed. LOS jitter models predicted
marginal performance due to axial disturbances at the higher wheel speeds above
10 Hz (600 RPM) so passive isolation of the RWAs was a logical approach.
Initial evaluations were made with wire rope isolators. The PSD of acceleration

Vresponse due to force input for this isolator is shown in Figure 5. The input
force level was varied from .0045 to .750 pound. The transfer function is
nonlinear in stiffness and damping as a function of disturbance amplitude. Both
these tendencies are explained to the first order by the loss of sliding fric-
tion in the wire rope as the amplitude is reduced. These nonlinearities make
accurate modeling of the isolator very difficult. An additional drawback is the
lack of strict determinism in the design of the stiffness and damping properties
since these characteristics cannot be independently controlled.

These difficulties led to the development of the viscous fluid damped
isolator shown in Figure 6. A simplified schematic and a cutaway of the flight
design are shown. In the dual chamber schematic damping fluid is contained by
two metal bellows supporting the center isolated portion. When the center
portion moves axially fluid must flow from one bellows chamber to the other,
incurring viscous losses as it flows. The damping value is determined by the
viscosity of the fluid and the dimensions of the annular passage between the
chambers. The stiffness is determined by the bellows design. These character-
istics are deterministic and independent. For radial motion the stiffness is
also deterministic although the damping is less so due to the complex flow. The
flight design works on the same rincipal but acquired additional complexity.
Coil springs were added in parallel with the bellows which effectively determine
the spring rates. A third preloaded bellows chamber was added outboard toaccommodate thermal expansion of the fluid. Mechanical stops were built in to

limit maximum displacements and a redundant leak-proof seal was added to mini-
mize the chance of fluid escape.

The equivalent lumped mass model and :ts theoretical transfer function were
determined from volume balance equations for the three chambers. Finite element
models of the metal parts gave translational and volumetric spring rates. The
fluid contributions taken into account were its bulk modulus and viscous loss in
the damping chamber. The isolator was assumed to be massless for this model.
The equivalent lumped mass model and its theoretical transfer function are shown
in Figure 7. It may be seen from the transfer function that high frequency
roll-off takes place with a slope of two rather than one as with a simple
parallel spring and dashpot. Physically, this is because high frequency motion
can be accommodated by volumetric changes in the chambers with no corresponding
flow through the damping chamber and hence very low damping. The double peak in
the transfer function occurs because with very low damping only k1 is effective *
whereas with very high damping k1 acts in parallel with the series combination
of k2 and k3. The PSD of axial acceleration at various force levels for the

.. .viscous isolator are shown in Figure 8. Both stiffness and damping are constant
for the range of input considered. Transfer function tests down to the lowest
threshold input attainable (.16 p in.) indicated linear behavior. The damping
properties of the isolator and tne internal fluid pressure are a function of
temperature. The pressure variation is controlled by the design of the thermal
compensation bellows. A positive pressure margin is maintained to prevent

BA-8
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cavitation in the isolator. The variation in damping was deemed acceptable from
a dynamic standpoint. An HST RWA mounted on an isolation system is shown in
Figure 9. Three sets of two rigidly coupled isolator units are used to support
the RWA at three points. For this application, the Isolators are aligned for
maximun damping in the axial direction. The structural attachments have been
designed for on-orbit replacement of the isolation system, RWA, or RWA plus
isolation system.

COMPONENT VIBRATION CHARACTERIZATION

V The test configuration for characterizing RWAs and isolation systems is
shown in Figure 10. The RWA is mounted to a holding fixture through the iso-
lators. The holding fixture is mounted to a large isolation mass through very
stiff piezoelectric load cells. The holding fixture is supported by low fric-
tion gas bearings to ensure that the preponderance of force transmitted to the
isolation block passes through the load cells. Sunning networks permit measure-
ments of forces and torques. The holding fixture can be rotated 90 degrees to
measure axial or radial disturbances. Radial force measured during a wheel
speed rundown without isolation is shown in Figure 11. This plot is a composite
of force spectra taken at 16 second intervals during a 1600 second RWA rundown
from 3000 rpm to zero wheel speed. The RWA was back-driven with constant torque
so the wheel speed varied linearly. In the plot, harmonic disturbances occur at
linearly varying frequencies whereas resonances in the RWA and test fixture
occur at constant frequency. Peaking occurs where the two coincide. A reso-
nance is evident around 105 Hz. A similar rundown plot for axial force is shown
in Figure 12. The peak axial force recorded during the rundown was 3.390
pounds, when the 2X harmonic passed through a resonance at 80 Hz. An axial
rundown with the wire rope isolators installed is given in Figure 13. Reso-
nances from 20 to 50 Hz are present. The peak force recorded was .248 pound
when the 1X harmonic passed through a resonance near 50 Hz. The ratios of these
peaks are not a measure of the isolator attenuation but reflect the ratio of the
Q of the RWA at its resonance to the Q of the isolator at its resonance, and
also the square of the frequency ratio since force is proportional to speed
squared. An axial rundown is plotted in Figure 14 for the Sperry viscous
isolator with 200 centistoke damping fluid. An axial resonance lies at 20 Hz
and a peak force of .053 pound was measured when the IX harmonic crossed it.
Again the ratio of the peak forces reflects the ratio of the Qs and speeds
squared rather than isolator attenuation. When 350 centistoke fluid is used,
the peak force is .025 pound. The difference in transmitted energy with and
without isolation is dramatic. The LOS jitter predictions show a similar level
of improvement with the isolation system.

The HST in dynamic test configuration is shown in Figure 15. It is sus-
pended by three cables from air bags to simulate zero g conditions. The trans-

fer function of vehicle angle response to control system torque was measured
with RWAs isolated and nonisolated. The isolators did not alter the transfer
characteristic. Figure 16 shows a close-up of the isolators in the test
vehicle.
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SUMARY

T. dubble Space Telescope is a spc-ecraft with unique sensitivity to
vibration disturbances. Its Reaction h zel Assemblies cause coherent frequencydisturbances in the millipound range. There are many harmonics of wheel speed
and te disturbances are proportional to the square of wheel speed. A passive
isolation system was developed to attenuate the higher frequency disturbances.
The isolators utilize a metal spring in parallel with a viscous fluid damper,
providing independent, determini stic control of the stiffness and dampingcharacteristics. Second order roll-off of the transfer characteristic isobtained due to the volumetric spring rate of the isolator. Stiffness and
damping were found constant over a disturbance amplitude range from .2 X 10-6 to.04 inch of input amplitude. Damping is a function of temperature but for thisapplication no compensation was required. The design has been space qualified
and subjected to four times life fatigue testing. Component testing hasdemonstrated greater than two orders of magnitude reduction in peak axial forcetransmitted by an RWA. Ground testing has been conducted with the spacecraft
suspended by cables from three air bags. Frequency response measurements ofvehicle angle due to torque commanded have verified the flexibility of the
isolators does not compromise the attitude control loop.
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G.ASDYNAKIC DAMPING PROPERTIES OF STE" TURBINE BLADES

Neville F. Rieger
Technical Manager

ABSTRACT

A theory for determining the gasdynamic damping values
of turbine blades is presented, which has special
application to steam turbine blades. This theory is based
on the pumping work which is done on the main gas stream
by such blades during their vibration. This theory is

suitable for blades of any airfoil cross-section under
non-separated flow conditions, during any blade mode of
vibration. Knowledge of the power output of a typical
blade is needed, together with details of the blade mode
shape. Details of the theory are given, together with
a simple application to a practical case.

I

Paper presented at the Vibrations Damping Workshop II, sponsored by Air Force

Wright Aeronautical Laboratorica. Workshop held at the Riviera Hotel, Las
Vegas, Nevada, March 5-7, 1986.
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INRODUCTION

This paper presents a general theory for the prediction of gasdynamic
damping of turbine blades. The contribution of gasdynamic damping to

the suppression of blade resonant vibrations is widely recognized, though

few attempts appear to have been made to evaluate its magnitude in

practice. To some extent this may be due to difficulties which surround

the development of a satisfactory predictive theory for damping in turbine

blades. These -difficulties arise from the obscure and variable structural

assembly conditions with which the blades arc secured to the disk, and

they are also due to the lack of solid test data to guide the application

of conventional damping theories to structural components within the

turbine anvironment. Gasdynamic damping is often seen by turbine engineers

as a minor contributor to the small overall dampIng values which blade

systems possess. It is argued that such minor damping is not worth

considering, as its value falls within the error band for structural

damping. Specific values for gasdynamic damping are, however, difficult
to obtain to test this idea.

More generally, it appears that the mechanism of gasdynamic damping itself

is not widely understood, and discussions of this mechanism are not readily

located within the subject literature. For theso. reasons the theory

presented here is comprehensive in nature, to address the need fo.. a
discussion of the mechanics of gasdynamic damping, and to provide a
procedure for obtaining numerical values of gasdynamic damping coefficients

for particular stage geometry and power level details. The theory

presented is suitable for the computer analysis of general blade geome-
tries. it s shown that the gasdynamic damping mechanism is viscous and ..

linear in nature for the relatively small vibration amplitudes associated

with turbine blades.

PREVIOUS WORK

There appears to havo been little previous work published in the open

literature on the gasdynamic damping properties of steam turbine blades.

Legendre [1], [2], presented two surveys of aerodynamic damping between

1967 and 1972. These surveys were directed toward compressor blades,
with some reference to turbine blades. Iammons (3] included gasdynamic

damping in his computer analyses of decay of torsional oscillations in

turbine-generator systems, but gave no details of the theory upon which
his coefficients were based. Subsequent work by Rieger [4] showed close

correlation between Hammon's results and the theory described herein.

An extensive literature exists worldwide on the gasdynamic properties

of compressor blades, which in recent years has focused on damping and

dynamic response of long fan stage blades. This literature is primarily

concerned with the influence of all primary damping sources, including

the likely damping contributions of special devices, to the prediction

of the instability threshold for such blades (rotating stall, flutter).

It is less concerned with the identification of damping coefficients under

the stable, forced vibration conditions addressed in this paper, although
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some gasdynamic damping data for selected airfoil operating conditions
has been presented: see Legandre [1], [2], Fleeter [5], and others.
The results obtained by these authors are in general accordance with the
numerical values for gasdynamic damping presented in this paper. Further
work on gasdynamic damping is needed, to compare predictod damping values
with test data from steam turbine blades.

NOTATION

A,B Integral Angles

C Velocity Damping

D (Superscript) Dynamic Component

F Blade Force

F Force Vector

L Length of Blade

N Speed, rpm

S (Superscript) Steady Component

T Torque Vector

' Work Done

i, , - Un!.t Vectors

.0
m Modal Response Harmonic

o Excitation Harmonic

p Pressure

P Pressure Vector

Lift Force Vector

r Radius

s Blade

t Time

u Amplitude of Vibration

u Velocity of Vibratiop )4
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z Radial Coordinate

a Constant

y Frequency Rad/Sco

A. Phase Angle Between Force and Displacement

_ Disk Rotational Speed Vector

0 Phase Angle From Time Datum

0 Angle of Rotation

OAngular Velocity

THEORY

Consider the elemental section ds.dz of the airfoil surface shown in figure
1 which is situated at radius z from the axis of rotation. The net lift
force _q which acts on this surface during operation arises from the
variation of tho pressure p around this surface, and is given by:

a p. ds.dz

If the gas pressure p contains both a steady component pS and a fluctu-
ating component p. sinyt of frequency y, the net lift force per unit length
can be written as:

= (p.S + pD sin yt] ds.dz

= S sin yt

where q S + q = qS i + qS

D D D D Di + q

and i and ± are unit vectors aligned as shown in figure 2.

More generally, the blade is responding to a forcing spectrum which
contains m harmonic components. The net gas force per unit length of
blade is then:
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a,~ +~sin (Yt+0.)

and 0 is the phase angle of the nth harmonic referred to some arbitrary

time Mtum.

A The blade responds to this forcing In each of its n modes of vibration.

The blade amplitude of vibration at radius z may be written:

n-us + I sin + -
mu1 nl

where X is the phase angle between the mth forcing harmonic and the
uth moda n amplitude.

The blade velocity u at radius z is then:

u u + Y UD cos (Yt + 0 )
u um mn m - mn

mil nl

*S .zs+ U D Cos (Ymt +Om~u~ + m Umn °° T o m - mrn)

m=1 nwl

where qS is the steady angular velocity of rotation of the rotor.

The torque T about the axis of rotation due to the total lift force F
is given by:

T F x = (F i+F'A) x (r k)

= TA - TTI

The total force due to the gas load _ on the blade is:

ro+L ro+L
0 0

F f _q dz = f (qS(z) + _ m (z) sin (Trot + Om)) dz

ro  ro  m=l

BB-5
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The work done per cycle due to the total torque T oscillating through
the total anglo 0 is given by:

W- _I.dO - !T.Odt - I.Odt

-ft
Q: ( x _) '(u z x dt F "u udt

Substituting gives:

':2n r o+L

fa fjSz + D(z) sin (?mt + 0.)) dz]
0 r mal

1; ' (Z + Y u (Z) Cos (YM + 0 - n) d(innMal nml

a z WSlZ) + wD(z)

where wS (z) is the steady component and WD(z) is the armonio omponent

of the total work. Considering W. z), and swriting (z) a q ( )i for
the work-producing component, and _ (z) a w zi for the steady velocity
gives, upon expansion:

21 ro+L0

m 0  r

O S/Forth siplstcase qS(z) q i.e., constant along the blade length.For the simplest cs
Integrating gives:

WS(z) =2,, S uS +m qt L (w +
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The period of integration y t is arbitrary and so may be extended to w t,

the duration of one revolulon of the shaft, i.e., one work-cycle. In
this manner, the steady-state work expression becomes: .5,-

V (z) =2n (.qtL) (r° +4,

which is the product of the steam force in the direction of motion times
the distance moved in the direction of motion during one revolution,

measured at the point of application of this force, as would be expected
from elementary considerations.

The expression for the harmonic work term WD(z) is:

2n r +L
0

WD(z) (z si (y a

0 r Ma zsn~t0

Y St V(Zin cos (Trt + Om- Xmn) dz'd(ymt) ."

Each of the remaining products in the work integral involves terms which
are constant in time, and which therefore represent zero harmonic work.are0

The terms %(z) and u(z) respectively describe the unit vector force A*
and the vector velocity T? location z along the blade. Expanding both
terms into their components, and taking the scalar product gives the
following work integrals for the tangential and axial directions:

2n r +L

mz) qT, (z) sin (i t + ).
o r m=1

0 _

2 m uT,mn (z)cos (Ymt + m 'mn dz m
Mal n=l. m

(z) Arf q,(z) sin (Tmt + 0m).

o r
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.inm Uo ,mn(z)o ( M t + OM- X V d(I,, t)

MM1 nal

'Rocilling that:

21t

f sin A cos (A B) dA n sin B

allows the above expressions for tangential and axial harmonic work to

be reduced to:

r o+L

T- f , m(Z) UT,mn (z) dz . sin %Mn

Sr:0 mul m 1 n-1

r o+L

() (Z) UA (z) dz * sin n

r0 aMal Mal nul

These expressions indicate that gasdynamic damping in a given mode depends

upon the phase angle X between the nth gas harmonic forcing component
and the response of thenblade in the nth mode. For all practical cases
the gasdynamic damping is evidently negligible unless the phase angle

h n/2, i.e., blade resonance exist; between the forcing harmonic m
a the vibration mode n.

The magnitude of the resonant gasdynamic damping may therefore be

determined mode by mode for individual resonant moges, once te radial

distributions of the tangential and axial forcing qT (z) and qA (z) are

known, together with the associated mode shapes uT (z) and UA (z)c

With the above concepts included the general work integrals for each

resonant mode n become:

r o+L

T,mn a qT' (Z) UT,mn (z) dz
~r O
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r 0o+L

-t Az fA m (z) d:

r
-~ 0

To ostablish the practical meaning of these expressions, consider the
simple case of the uniform cantilever blade shown in figure 1 which rotates
at W rad/sec while vibrating in its lowest mode at y rad/sec. Assuming
that the first mode of vibration in the tangential direition has the form:

uTi (z) " 2L - oo

0m
where is the vibration amplitude of the tip of th. cantilever In

this instance the blade is enoastre' at its attachment to the disk, and
so,

uAl (0) - 0.

For convenience the gasdynamic f rce per usit length along the blade is
assumed to be constant, i.e., (z) I q -- Const. The work integral
is therefore obtained between and L as the cantilever base has no
hirmonic motion. Then

L

D[1 -fcos 2L

0

,D 0 nl
0.3634 n . L u0T,

This expression Vdicates that the work product of the tota excitation

harmonic force and the blade tip vibration amplitude U T1 must bemodified by the f-actor 0.3634, to allow for the effect of the mode shape

in assessing the damping work of this case.

MGMNIDE OF XIOI4 C GASDYNAMIC FOCE

The magnitude of the gasdynamic damping force which develops in response
to blade oscillatory motions may be determined from the stage power (or
torque vs. speed) curve. A typical stage power curve is shown in figure

BB-9
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3, in which the constant power characteristic shown is described by the

relation:

cP - TN,

where P is the output horsepower, T is the stage driving torque in lb.in.,

and N is the shaft speed in rpm. With these units the constant a has

'he value 63025.

Under conditions which involve small fluctuitions of speed and torque

but with constant power output, the differential relationship between

these quantitics is:

adP - NdT + TdN

For constant P, dP - 0 and so:

0 - NdT + TdN,

i.e., !T _ O

dN N N2

thus dT - - -dN 9.55 Td0,

M - C0S do,

where C0 = 9.55 T/N

The fluctuating blade torque is governed by oscillations in the gasdynamic

force along the length of the blade. For convenience this force may bo

referred to the blade mid-height by writing

dT (r + I L) dF=-C d;
0 2 s

uO D

1 C (L) I(ro + Q), :

i.e., dF C 1Cu D (L) =-Cu u D
S T S T
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where Cu C 0 / (r + L) (r L) 9.55 T
S S 02 + L) (r L)

This expression is suitable for modes in which the maximum modal amplitude L
occurs at the tip of the blade.

The total gasdynamic force on the blade dF is also given by the oxpres-$ion: I

re+L  !

dF= Jq(z) zdz/ (r + I L)

In low-order modes where the blade is motionless at the base, and where
the gasdynamic force is of constant magnitude along the blade length,
integration gives:

dF =- C L, Cu

Dl

Recalling the expression for the gasdynamic work and substituting for
dF therein gives:

WD - 0.3634 . u.(D (L 2
uT DTi " - .l3 Cs 7(uT (L)

where C- is given by the formula stated above, and u (L) is the blade
tip amplitude. This shows that the gasdynamic wori on the blade is
nsgative, i.e., dissipative, and that the form of the work expression
is the same as the well-known form for viscous dissipation, i.e., W
- (const.) n CD 7, u2. A similar expression can be obtained for the axial
gasdynamic work WA1 , once the modul oquation u(zj is specified, and the
distribution of t& gas force along the length bi the blade is known.
The damping work for higher modes, mad for coupled vibrations in both
the axial and tangential directions, likowise depends upon the availability
of information on the mode shapes, and on the lengthwise gas force
distribution.
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a. Details of gas loading zI
!4

on airfoil at radius z.

ro

b. Blade geometry on disk.

Figure 1 Blade Loading and Geometry Details
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A LAYERED NOTCH FIITER
FOR I [IGH-FREQUENCY ISOLATION

J. L. Sackman
J. M. Kelly

University of California, Berkeley

and

A. E. Javid
IBM Corporation

An efficient method of isolation from high-frequency vibrations Is the
use of periodically layered compositcs acting as a mechanical filter. This
device is a periodically layered stack of alternating materials with widely
different densities and stiffnesses. The working principle of the device is
wave reflection, and the device becomes increasingly effective when there is
a large impedance mismatch which leads to rapid attenuation of an input
wave for certain frequency ranges. This filter acts only in specific fre-
quency bands. At other frequencies, it will transmit the vibratory energy
unmodified, thus acting as a mechanical notch filter.

The theoretical development of Lnc mechanical notch filter is based on
the theory of waves in periodically layered media. Floquet theory is used to
solve the equations for the propagation of plane waves through a laminated
system of parallel plates of different materials when the direction of propa-
gation is normal to the plates. Several experiments were conducted to
prove the validity of the mechanical notch filter concept. These experi-
ments demonstrated that the theory is correct and that the results have
practical application.
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I. INTRODUCTION
In the design of machinery the control of undesirable vibrations is fre-

quently handled by the use of isolation concepts. In most cases the fre-
quency of these vibrations Is low, e.g. less than 100 Hz, and the principles of
vibration isolation for this range of frequency are relatively well under-
stood1 . In some cases, however, there may be a need to protect very sensi-
tive components from higher frequencies and the standard techniques may
not be appropriate due to the presence of wave effects. jo deal with high-
frequency vibration problems It was suggested by Javid that the device
known ab a mechanical filter5' r be used. This device is a periodically lay-
ered stack of alternating materials which have wide differences in density
and stiffness. The working principle of the device is wave reflection and the
device becomes increasingly effective when there is a large impedance
mismatch between materials. Lage differences in impedance can lead to
rapid attenuation of an input wave for certain frequency ranges. This filter
acts only in specific frequency bands. At other frequencies it will transmit
the vibrations unmodified (as in the case of steady-state vibrations)

The theoretical development of this system is based on the theory of
waves in periodically layered media. The equations for the propagation of
plane waves through a laminated system of parallel plates of different
materials when the direction of propagation is normal to the plates are
treated by what is called Floquet theory 'g. The problem of a shear wave
propagating through an infinite stack of plates each of which is infinite in
extent allows a very simple solution which can provide insight into the
existence of stopping bands and an understanding of the attenuation of a
mechancal filter of this kind. An analysis has been given by Iee and Wang 7

and Lee for cells containing two layers and by Karim-Panahi for cells with
three layers.

The fact that real filters have plates of finite extent does not appear to
affect the response generally, possibly due to the fact that in shear waves
the error, introduced by the assumption of infinite plates are due to the
presence of shear stresses in the free surfaces at the edge of each plate If
the width-to-thickness ratio of each plate is vcry large, this error will be
small. This supposition appears to be supported by the results of the exper-
imental program conducted at IBM. In addition, the theory predicts
extremely rapid attenuation of the waves when the frequency of input is in
the center of the stopping bands and thus the waves are effectively blocked
after only a finite number of layers are traversed. The fact that the real
stack is finite, as opposed to infinite as assumed in the theory, seems there-
fore not to obviate the existence of stopping bands although it may modify : .
their details.
2. THEORETICAL BACKGROUND

In what follows we use terminology common in the theory of periodi-
cally layered composites in which each cell, of thickness a, is made up of
two layers of different materials. We refer to that layer which is composed
of the denser and stiffer material as the filament, and the other as the
matrix. The filament layer iq taken to be of thickness b and the matrix of
thickness a -b. The direction of propagation of plane waves through an
infinite stack of these cells is normal to the layering and distance is denoted

BC-2

ot. , . . ,



by x (Figure 1). The displacement In the parallel direction is denoted by
w(z, 1) and it is assumed that:

w(X.t) ((X))

where e is the frequency of steady-state oscillatory input. The densities
and shear moduli of the filament and matrix materials will be denoted by
pf ,pM and Gi, Gm.

The only non-zero strain and stress components are:

ex T( G(X Y(X(2)

The equation of motion takes the form:

'uOz ~J+ ~~.u= (3)

The functions G(x) and p(x) are periodic functions with period a, the
cell thickness, and according to Floquet theory the solution takes the form.

U(X) = V(X)Oiq (4)

where ,(z) is periodic with period a, and q is a constant wave numbcr. The
displacement w(x,t) thus takes the form of a Floquet wave propagating
through the stack:

u,(X. f) = V(Z)e(!-d (a
The second order differential equation requires two boundary condi-

tions, which in the Floquet theory are supplied by the quasi-periodic boun-
dary conditions:

u'( 04 o(7)

It should be noted that these equations arise from the periodicity of V(x)
and the requirement of cuntinuity of displacement and shear stress across
cell boundaries. The ordinary differential equation (3) and the quasi-
periodic boundary conditions constitute a Sturm-Liouville (or eigenvalue)
system. Here, the cigenvalue is the wave number q.

The eigenvalue equation is most conveniently obtained by considering
two linearly independent solutions of equation (3), which we can denote by
u1 and u2 , and taking the eigenfunction as U1 + au2 where a is a constant to
be determined from the boundary conditions. Since the functions G and p
in (3) are constant in each layer in a cell, the basic solutions uI and ue Lake
particularly simple forms. In the filament, the first solution ul is taken to
be:

U, = Cos W- b._ _< (

where c/='VG/.JP" In the matrix material, b/25x5<a/2, andul takes the
form:

Cm Cm
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where A*,B are determined from continuity of displacement and stress at
the Interface between filament and matrix at x b/2. These lead to the
solution for u1 for the matrix In the form:

_2 Co
ab = Cos p si -E-sin
Eel Cm - cf Cm

2 2

where
P = EL Pf- 1t

cf Gm pm crj

The solution for ul in the region -(a/2)sz--(b/2) is given by the above
using symmetry.

The second solutior. is obtained by taking:
caz = sin -X _ b 6 (12)
C1  2 2

in the filament material and using the same technique to cxtend it to the
matrix material in the regions b/25z-a/2, -a/2sx.-b/2. When we take
both solutions in H-. form

ul + ual2  (13)

and use the first quasl-periodic boundary condition we obtain a and the
solution for u in the form:

03 b c (a -b) -psn s-in (cm b

- O= o s_ 9 - .+ Ioo +..L
C in cab C (a -b) +Pcsfb sipa -b

2c1  
2 cm 2Cjr 2

X Lanz 9 -sin 2- (14)

for the filament region -b/2 - z .s. b/2 with a corresponding exprcssion in
the matrix region. When these two solutions are substituted into the second
quasi-periodic boundary condition, we obtain the final eigenvalue equation
relating the eigenvalue q to the input frequency w:

cosqa = cos cJ(a -b) cos Eb -1"L& + ) sin (a -b) sin - b  (15)
am Cf 2 m Cf

It is this basic equation which reveals the existence of i v;tve-blocking
filter. In order that the composite system transmit waves of a specific fre-
quency w, the eigenvalue q must be real. If for some value of w the right-
hand side of equation (15) is of magnitude greater than I, then q will be
complex and the imaginary part will give a solution in the form of a decay-
ing exponential. Under these circumstances, a wave will penetrate in effect
only a finite distance into the stack. It is clear from equation (15) that if p
is large enough, the value of the right-hand side can exceed I for a wide

range of w_. The design of the filter follows from this equation and a detailed

BC-4
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analysis of equation (15) is given in the next section.

3. APPLICATION TO FILTER DESIGN
In the design of practical filters, it is essential that there be a large

impedance mismatch between the two materials and this means that the
parameter/p in

cosga = cos ci(a -b) cos cAb - 1 +.) 1 0(-'). cbCIM of 2(P C-MI -b l.f (

I wllbevey are. ~ ~ ~ )in Cm (15
will be very large. We will also be considering very thin layers of either
material. It follows that the quantity

Ir (16)
Cf If2b

is the ratio of two frequencies: the first, w/2n, is the input frequency, and

c./2b is the natural frequency of the first thickness shear mode of the
filament layer. This ratio will be very small in most realistic designs and we
thus will approximate sintb/c$ by cjb/ce and coscib/c 1 by 1. If 1/p with
respect to p is neglected, then equation (15) becomes:

=---b sin a(a -b) (17) i

CM  C1  Cm

It is convenient to rewrite this equation in the form:

cosga = cosz - az sinz (18)

where
1 p b j-s 19'

'Pm(p -b) -pm

b (20)
a- (-b)

Ca

cda -b). 2r
CmC (21)Crn Crn

2(a-b)

In the above, S is a thickness ratio (viz., the ratio of the thickness of the
filament layer to that of the matrix layer), and z is essentially the ratio of
the input frequency w/27r to that of the natural frequency of the first thick-
ness shear mode of the compliant layer, cm/2(a -b). For the regime of
practical interest, equation (18) is the key relationship and the basis for the
design of the band-stopping mechanical filters.

The design concepts involved are quite straightforward. Given that one
wishes to block frequencies in a certain band, the material properties and
the thicknesses of the layers making up each cell must be chosen so that
the right-hand side of equation (18) has a magnitude greater than 1 in the
frequency band of interest. Thus, the edges of the stop bands will be given
by the condition that cosqa -1 or +1. We see from the right-hand side of
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equation (18) that for small values of z (corresponding to small values of w),
cosga will be positive and slightly less than 1. As t (and therefore z)
increase, cos qa diminishes, becoming negative, reaching the value -1, which
is the start of the first stop band, and then decreasing from -1 to a
minimum and increasing back to -1 when z = it, which Is the end of the first
stop band. As w (and z) increase, cosqa will become positive, then attain the
value +1, which Is the start of the second stop band, then increase from +1
to a maximum, and then decrease back to +1 at z = 2n, which is the and of
the second stop band. In this way, an infinite sequence of stop bands Is gen-
crated, each terminating at an Integral multiple of rr. j

The start of each stop band must be determined numerically from
equation (18). In practice, we would be Interested in only the lowest few
bands, and also in designing the system in such a way that the start of the
first stop band is as low as possible. This will produce the widest possible Ifirst stop band. .i ""

Considering the stop bands produced by cosqa = -1, the corresponding
values of z are, from equation (18), given by roots of:

ax sinz = 1 + cosz (22)

shown graphically in the sketch, Figure 2. For the stop bands produced by
cosqa = +1, we get the equation:

aosinz = -1 + cosz (23)

whose roots are also shown in Figure 2.

The specific roots giving the beginning of each stop band may be deter-
mined numerically by a relatively simple procedure. However, for certain
conditions it is possible to obtain closed-form approximations for the first
root. For example, if a is small, the first band is narrow and the first root
for z is close to ir and a simple approximation is

Z =mr -2a)

More pertinent to filter design are large values of a; here, the band is
wide and the first root is approximately given by:

Z = -,2--/a(25)

Most real filter designs will involve intermediate values of a, necessitating a
numerical analysis of equation (18). Examples will be given in a subsequent
section." " b P

In any real filter we will have a finite (and probably a relatively small)
number of cells. It is important to know how much decay will take place as
the wave propagates through the filter. For a filter of infinite extent this is

given by qj, the imaginary part of cosqa when this has a magnitude greater
than 1. For a filter of finite extent, wave reflections will occur at the free
surfaces at the top and bottom of the filter so that the q, mentioned above
will no longer be the exact measure of the decay. Nevertheless, we can use
this as an indicator of how effectively waves are blocked by the finite filter
when they are in a stopping band. For a fixed-frequency w and cosqa < -1,
we obtain:

q = -+ iq(
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where
91a = cosh -1(-cosz + az sin ] (27)

Since w(x,t) = v(z)e'-qzu) and v(x) is periodic with period a:
~~~I W(-0,=)1,.. - ,,,

where n Is the number of cells in the fifter. We Interpret the left-hand sideof equation (28) as measuring the ratio of the maximum of the response at

the top of the filter to the maximum of the input at the bottom of the filter.
We denote this ratio as 11R, where R is the reduction factor associated with
the filter. The number of cells required to obtain a reduction of R is thus-il given by.

n = InR (29)le

which Is an important relationship for filter design. For a giveP choice of
cell materials and geometry, the number of layers can be selected to pro- -
vide the necessary degree of attenuation, and therefore reduction, at the
prescribed frequency. This frequency must lie within the stop band, since
when I cosqa I :5 1, there is no attenuation, and hence no reduction.

The degree of attenuation for fixed n will vary with frequency within the
stop band. By determining how the reduction factor R diminishes as I
approaches either edge of the stop band (R= 1 at any edge of the stop band)
we can define the effective range of the stop band, i.e. that range of the fre-
quency ci within the stop band for which Ra:R', where R° would be the
desired degree of reduction for the filter. Once a filter has been designed, it
is relatively easy to determine its effective range by a straightforward
numerical evaltuation of equation (18), also using equation (28). An illustra-
tion of this will be given later.
4. EXAMPLE

To verify physically the fundamental phenomenon of interest, namely
the existence of stop bands in a periodically layered medium, some experi-
ments were performed at IBM San Jose by Ahmad E. Javid on a block of such
material. The block, a square 8 inches on edge in planform, was 13 cells
deep. each cell was 1/2 inch thick and consisted of a 3/8 inch thick layer of

rubber bonded to a steel layer of 1/8 inch thickness. The propert.es cf
these materials were:

Gm = 200psi , pm = 1.16 9m/cm3

G1 = 12 X 100p.i . Pfr 7.7 gm/ c= 3

for the rubber and steel materials, respectively.

Before experiments were comme-nced at the IBM site, aoir.putatk ns
were performed to determine the first (lowes". Irequercy) sLtp Land. This
required the use of the folioving quantites:

= ,pmr = i incres second

..- -

, _ , , 129.1 103-. inches per second
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P = " 31 >> !

IS = ct = 516.5 X 103 11Z
I4 2b

We expected that the lowest stop band of this system would have a fre-
quency f of order 10 Hz. Therefore, f/$I1 << 1, so that we are justified In
using the simplified equation (17), or equivalently equation (16). rather than
the more complex equation (15). Thus, we have to find the lowest root z of
the equation:

co.s qa = cos z - -z sin z = -1 (30)

where a Is given by equation (19) and in this case has the value 1.106.
A simple numerical solution uf equation (30) by the elementary scheme

of the method of chords gives for the lowest root, z, a value of 1.2515, which
represents the start of the first stop band. As mentioned previously, the
end of the first stop band is given by z = 7r. From equation (21), we recall
that:

wher e (31)

where f is the frequency of vibration in Hz, and

fm = a-b)32)
is the natural frequency of the lowest thickness shear mode of the rubber

layer. This yields for the beginning of the first stop band the frequency
f, = 722 Hz, and for the end of the first stop band the frequency fE = 1808
Hz. The frequency fu at the middle of the first stop band is 1265 Hz. Thus,
our preliminary estimate that the frequency of the f.rsL -itop band would be
of order 103 Is correct.

To see how large the attenuation is when the frequency of the vibration
$ is within the stop band, we examine the s.tuatlon at the midlie of the stop
band where f =fj, = 1265 Hz. Using (31), we compute for "ne right-hand
side oe (18) thaL cosqa = -2.55, whence, from (27), qlt = 1 59.

For a filter n cells deep, this givws a reduction factor R of exp[nqa] (see
equation (28)). Thus, we have:

n 13 7 3

R 9.48 x I0 68,200 t18

Even for a filter of only 3 cells, we get a considerable reduction (over 100).
Experiments were performed for n = 13, Lhen n = 7, and finally for n

• The beginning and end of the flrbt stop band occurred at frequencies
very close to the predicted ones given above.
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It is important to see how the quantity qla, which controls the reduction
factor R, varies as we approach the edges of the stop band. As discussed
previously, this will define the effective width of the stop band. We hve
determined gqa and the corresponding values of R for 3 layers (i.e., n = 3) at
the 1 /8-th point of the stop band (where f = 858 Hz) and at the 7/8-iL poin.
of the stop band (where f = 1672 Hz). We obtain:

$ (Hz) 722 858 1265 1672 1808

0 1.012 1.59 1.141 0

R 1 20.8 118 30.6 1

Thus, we see that even when we are close to the edges of the stop band, a
three-cell filter gives a considerable degree of reduction.

A certain amount of reduction, unaccounted for in the present theory,
will also occur due to the viscoelastic nature of the rubber. This reduction
due to material damping can be estimated and compared to that caused by
wave trapping produced by the layering. A shear wave propagating through
the rubber alone would have a displacement field given by:

W X )= g (x-Q)(33)

with

q = qR + qD (34)

where qR is the real part of the wave number and 9D represents the attenua-
tion facto; due to material damping. This factor can be written in terms of
the real (GR) and imaginary (GI) parts of the shear modulus of the rubber
as:

I , 2

qD =~, sn(2~)1~+ fojl.(35)

with:
0= arclan 6 (36)

G1  (37)
GI

and p is the density of the rubber. Since GR >> G, for the rubber used in the
bearing, we get:

qD (38)
2c

where c = GRIP " is the speed of shear waves in the rubber. For this

rubber, 6 = 0.15, and if we consider a filter with three cells, the reduction
factor, RD, due to damping is at the midpoint frequency of the stop band

BC-9
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(1265 Hz):

RD - = (.)(.l7o) = 1.64 (39)

The reduction factor R due to wave trapping was, for 3 cells, at this ire- 4
quency, 118. Clearly, material damping plays a negligible role in reducing
the magnitude of the output, the major reduction is caused by wave trap-
ping.

The block was also cut so that its dimension in the y-direction was
halved, and vibration experiments were performed on this reduced block.
This reduction in the planform of the block should have no effect on its per-
formance as a filter since all planes where V is equal to a constant are trac-
Lion free. Experiments appear to bear out this conclusion.

The block was then cut along the plane - eqral to a constant (see Fig-
ure .) so that its dimension in the z direction was halved. This reduction
could have an effect on its performance since the planes for which z is a
constant are not traction free. As discussed in the Introduction to this ii
report, edge effects will thus be present. It was the purpose of these experi-
ments to get a preliminary estimate of the importance of edge effects.

The experimental results will be discussed in Section 6. ,
5. ILUSTRATION OF FIITER DESIGN: OPTIMAL DESIGN

As an example, we will consider first the design of a filter with a rela-
tively low-frequency stop band. It is desired to design a filter that will block
a frequency of 400 Hz. The dimensions of the filter are to be 1.5 inches x 4
inches in planform and I inch deep. To get an effective filter, we want to ZL
design it so that 400 Hz will fall near the middle of the first stop band.

We begin by assuming that we will get a sufficiently high reduction iac-
tor by using 3 cells. Each cell will be composed of a layer of rubber bonded
to a layer of steel. Since we are trying to block frequencies %hich are rela-
Lively low, we want to make the frequency at which the first stop band
begins as low as possible. Thus, the most compliant rubber available must
be used. An oil-extended rubber has been produced with the following pro-
pertiesi°:

G,, = 37.7 psi P = 0.93 gm/c 3

For steel, we have the following properties:

G$ = 12 x 100 psi Pm = 7.7 gmr&/c vrz

This yields:

l= 129.1 'c 103 inches per second

Cm 658.6 inches per second
1

p = 1623 >>

We note that ab/cf - 0.02 << 1, so that we are justified in using the approxi-
mate relation (18).

For our first design attempt we chose S = b/a -b = 1/2. Thus, since a =
1/3 inch, b = 1/9 inch and a-b = 2/9 inch. Then, a = 2.07 and solving
equation (18) with this value of a, we obtain for the lowest root z =, B
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0.945. Then, fI = 0.945/7rfm, fm= c,n/2(a -b) 1482 Hz, which yields the
value $B = 446 Hz. The 400-Hz frequency is not within this stop band, and
thus the design is not appropriate.

For our second attempt, we try S = 1/3. Going through the same pro-
cedure as above, we obtain zu = 1.138, which yields fB = 476 Hz, a value even
larger than the first attempt. Thus, we are moving in the wrong direction,
and we have to try a value of S larger than 1/2.

In our third attempt, we use S = 1. This leads to zu = 0.6815 and Iu =
429 Hz, which is an improvement over our two previous designs, but is still
not suitable. Therefore, we again move to a larger value of S.

For our fourth attempt we use S = 3, which leads to zB = 0.3986 and f$
= 501 Hz, which makes this design worse than any of the previous three.
However, these four designs Indicated that there must be some particular K
value of S which, for a given cell size a, minimizes lD. We now wish to deter-

mine that value of S and the corresponding minimum value of fB. For our
purposes, this would be the optimal filter.

There are several ways in which we could investigate the question of
what is the optimal value of S so as to minimize fB. We begin with the sim-plest approach. It is clear from equation (18) and Figure 2, that one way to
obtain a small value Of fB is to choose material properties and a value of S" .which make a as large as possible. This can be accomplished for values of S
of order unity by choosing materials such that.r/pao >> 1.

Let us assume that p/p. -. which implies that a -, , . As a -,, zB -,
and we get

f (z) cos z - az sinz - (1 - l-z2) -

that is,
f(z) - I 22-

since a >> 1. The beginning of the first stop band, zB, occurs when "(z) = -1.
Thus, we get,

-I = 1 - az2

whence, zB = r",7,. Now,

ZLy Cm ZB a

where f -- is the natural frequency of vibration of the first thickness

shear mode of a layer of the rubber used in the filter with a depth equal to
a, the cell depth. The factor ID may be rewritten as:

ID = -(-ZB(1 +' S)]

But Z with a PL x 2 Putting this into the expression for ID, we
~ '*.'2 pm

obtain:

!2v/l-r- 1
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We note that once the materials and cell thickness have been chosen, the
first bracket is a constant. The dependence of fa on the thickness ratio S is
expressed solely in the second bracket. Therefore, irn order to minimize fu,
that value of S > 0 which minimizes the second bracket must be selected
The second bracket is a well-known function whose minimum can be found
by elementary means, and it occurs when S = 1. This is an interesting
result, and certainly not an obvious one. The optimal filter occurs when the
layers of rubber and steel are of equal thickness.

However, it must be kept in mind that the preceding analysis is correct
only when a>> 1. For our choice of materials, if we set S = 1, we get a =
4.14, which is not >> 1. Thus, we can use S = I only as a rough guide to
optimal design when a is not >> 1. Our four previous design attempts bear
out the validity of S = I leading to a near optimal design. Of all our designs,
the one which gave the lowest value for fB was the one where S = 1.

We can now try to deal with the optimal problem in a more general
manner. Let us attempt to construct an algorithm that will lead to an
optimal design for any value of a > 0. We have:

J(s) = + S1 (j9)

where %B(S) is the lowest root of equation (18) with cosqc = -1:I o
COS2 2 1PSzI]5 sinz +1I= 0 (40)

In the sequel as a matter of connenience we will drop the subscript B on zB.
For a minimum value of fB we must have:

= 0 which implies that (1 + S)dz (S) + z(S) = 0 (4)dS dS
From equation (40) we get:

d.z -r. sin z (2
dz ISSl (42)
dS Ssinz +SzCosz +2P. sinz

PM
Substituting (42) into (41), and simplifying, we obtain as the optimality con-
dition:

nS = [ -- 2(pm/pf)][tanzI =[z- (43)

It is important to recall the meaning of z: it is the lowest root of equation
(40).

Based on the optimality condition, equation (43), we can now construct
a simple iterative design procedure which will lead to the optimal value for
S. Say that we have arrived at the i-th design attempt. It is associated with
the value St. We obtain the root z, which is the lowest root of equation (40)
with S = Sj. How do we choose St to give us a better design? We use the
optimality condition, equation (43). In the right-hand side of equation (43)
we substitute for z the value zj. This then produces the value St. . That is.

( - 2(Of/pm)] (44)

B-- =[,-- .,lt_-=
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We continue this process until we converge to the optimal value of S. As
a partial check on the validity of this formula, consider what happens as
p /pm . which implies that a - w. Then, equation (43) yields S = 1, which
was the result previously obtained by a direct solution.

We now apply this method to thq example that we were discussing previ-
ously. Starting with the first case, we had S, = 1/2 with z = 0.945. Equation
(44) yields for S2 the value 1. 11, which is a move in the right direction. For
the second case, we had S, = 1/3 with z2 = 1.130. This gives for S2 the value
of 1.4 which again is a move in the right direction. For the third case, we
had S = 1 with z, = 0.6815. This results In S2 = 0.9027. For the fourth case,
we had S1 = 3 with z, = 0.3986, which leads to Sp = 0.80. Thus, 11n all four
cases, the optimality condition drives the next value of S (i.e., S2) closer to
the optimal value than S, was.

Let us continue with case 3 (where 5, = i) because our crude criterion
states that S = 1 is the optimal condition. We can use this as input to the
more refined criterion, equation (44). We have seen that S, = 1 gives
z, = 0.6815 and fu = 4P" riz, which leads to S2 = 0.9027. With this value of S2
we obtain for Z2 the value 0.7157 and for Ia, 429 Hz. This then leads to
S3 = 0.9214, which then gives z: = 0.7075 and fB = 429 Hz. At this stage we
see that the iterative optimization scheme has converged. We find that Ia is
not very sensitive to small changes in S when we are near the optimal point.
For S = 1 or 0.9027 or 0.9214, we get ID = 429 Hz. There is no point in trying
to seek greater accuracy. (The true properties of the rubber are not known
all that accurately.) From a practical point of view, the easiest filter to
manufacture would be for S 1 1, i.e., equal thicknesses of steel and rubber.
(If there are slight errors in the manufacturing process, so that S is not
exactly equal to I, but close to it, then our previous results tell us that it is
not critical, since when S is near 1, $B is insensitive to small changes in S.)
The lowest value of f attainable for the materials utilized and a cell thick-
ness of 1/3 inch is 429 Hz. Thus, such a filter cannot be used to stop
transmission of a disturbance with a frequency of 400 Hz. Therefore we
must try a larger cell size, which implies, for the fixed-depth dimension of I
inch, a smaller number of cells.

We next choose a filter with 2 cells, so that a = 1/2 inch. Based on our
previous work, we also choose S = 1. This leads to ZB = 0.6815, as for our
previous case 3. But now this leads to I' = 286 Hz. We know that Z., the
root associated with the end of the first stop band, is zc = ir, which leads to
f'v = 1317 Hz. Thus, the frequency of interest, 100 Hz, lies within the stop
band, and this design is potentially acceptable.

Now, we must check to see if the reduction factor for this design is
sufficiently high for practical purposes. For this design, we obtain
qla = 1.627. Thus, for a filter with 2 cells, we have: W

R = n~Q=26

If this is not a sufficiently high reduction factor, then the filter cannot be
designed successfully with this choice of materials. One would have to find
more suitable materials, e.g., the stiff material should have a larger density
and a larger shear wave speed while the compliant material should have a
lower density and a slower shear wave speed.

BC-13
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It is interesting to note that if we could make the filter 1 call thicker
(i.e., 1.6 inches instead of I inch), the reduction factor R would increase to
the value 132. This value would appear to be sufficiently high to meet most
practical requirements.

Next, we consider the design of a high-frequency filter to block distur-
bances with a frequency of 6000 Hz. Experience with the previous design
attempts for a low-frequency filter show that the thickness of the rubber in
a layer in a cell should be chosen such that the natural frequency of thefirst thickness shear mode, fi, is somewhat higher than the frequency to be

blocked, since the first thickness shear mode frequency is equal to fS, the
end of the lowest stop band of the filter.

In this design, it is not necessary to use the special, highly compliant,
oil-extended rubber previously employed. We can use an ordinary carbon-
filled rubber of the type used in the filter that was studied experimentally at
the IBM site. Thus, we will use the material properties listed in Section 4.
Let us choose for f, an approximate value of 10000 Hz. But
f = c,/2(a -b), so that a -b P 0.0679. Therefore, we choose a - b = 1/16
inch = 0.0625 inch. We also choose S = 1 for optimal design (to get a broad
band for the stop band), so that b = 1/ 16 inch and a = 1/8 inch. This yields
Im = 10866 Hz, a = 3.319, zu = 0.7573, and lB = 2619 Hz. This puts the
6000-Hz frequency near the center of the stop band, which indicates a good
design (i.e., large attenuation).

At 5000 Hz, the value of qpz is 2.215, a quite high value, which is desir-
able. Thus, we get R = 9.16 for a single-cell filter, R = 83.9 for a two-cell
filter, and R = 769 for a three-cell filter. In some applications, a single-cell
filter might suffice.

As a final check on our design, we look at the quantity rb/c whose
value, 0.0 152, is << 1, in accordance with our initial, simplifying hypothesis
6. EXPERIMENTAL RESULTS

To verify certain aspects of the theoretical results presented above, a
series of experiments were performed at IBM in San Jose on several speci-mens oi periodically layered composites. Due to Lime and cost constraints,.
only a limited program could be pursued. The purpose of these experiments
was to ascertain whether the wave stopping phenomenon predicted for the
infinite composite medium would be observed in a block, or mechanical
filter, of finite dimensions. If wave blocking were observed in the finite filter,
we then wanted to determine whether the frequencies of the start and end
of the observed stopping band were adequately predicted by the theory
based on the infinite medium.

Two composites were used in the experiments. The first was the compo-
site described in Section 4 and the second was made of alternating steel and
rubber layers, each with a thickness of 1/4 in. The rubber employed was an
oil-extended one as described in Section 5. The experiments were per-
formed by attaching the bottom of a specimen (or filter) to the rigid base of
a vibration table which was then excited, first by a sine sweep input and
next by a random input. A transducer attached to the rigid base of the
vibration table measured .. ie input at the bottom of the specimen, and one
attached to the top of the specimen measured the output there. These
measurements were fed into a Fourier analyzer which then displayed and
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plotted the transmissibility of the specimen filter. In this way we could
directly observe whether any wave stopping occurred.

The tests performed on the first composite were with a specimen having
13 cells and a planform of 8 in. by 8 in. Wave stopping was observed in a fre-
quency band close to that of the lowest predicted from the theory for the i:
infinite medium. To assess whether decreasing the planform of the filter
would obviate the wave-stopping action, the specimen was cut in half to pro-

duce a filter of 4 in. by 8 in. The behavior of this filter was essentially the
same as that of the larger one. Next, this filter was cut so as to remove 6
cells, leaving a filter of 7 cells. Tests on that specimen yielded a stopping
band whose starting and ending frequencies differed little from those
obtained in the previous test. This 7-cell filter was then cut to reduce its
planform to a square 4 in. on edge. Again, tests demonstrated wave block-
ing with essentially the same frequency interval for the stopping band. For
the final series of tests on this composite, the 7 cells of the 4-in. specimen
were shaved to 3. Tests on this filter yielded results similar to those
described above.

Typical experimental data are shown in Figures 3 and 4 for the 3-cell
filter. The input and output oscilloscope traces under sinusoidal excitation
at a frequency below that of the first stopping band are shown in Figure 3.
The output is not reduced. The input and output traces when the excitation
frequency is within the stopping band of tJhe filter are shown in Figure 4 and
the reduction in the output is marked. The transmissibility (output/input)
versus the frequency of this filter are shown in Figure 5 in which the stop-
ping band is obvious. Within the stopping band, this filter can produce a
drop in the transmissibility of as much as 40 dB.

Tests on the second composite were performed on a specimen with 3

the first specimen except, of course, that different stopping bands and

attenuation values were obtained. The transmissibility versus frequency
for this filter is plotted in Figure 6 where ,a reduction of as much as 60 dB is
observed.

These results demonstrate that the fundamental wave-stopping
phenomenon predicted by the theory for a mechanical filter of infinite
extent composed of a periodically layered composite is not obviated when
the filter is of finitc. extent. By reducing the filter to finite extent. the
details of ts behavior are modified, but its basic action is not.
7. CONCLUDING REMARKS

The study summarized in this paper indicates that it may be feasible to
use periodically layered composites as mechanical filters for a variety of
vibration isolation purposes. In comparison to conventional vibration isola-
tion methods, the use of such mechanical filters would be primarily in the
higher ranges of frequency.

The theory employed in this study is based on wave propagation in a
periodically layered composite of infinite extent and composed of two
materials. Given such a medium, the prediction of frequencies of the stop
b nds of any particular composite is quite straightforward. These slop
bands define the mechanical filtering action of the medium. Theoretical
predictions of the beginning and ending irequericies of stop bands appear.
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to be corroborated by experiments carried out at IBM.
However, in practical applications, mechanical filters are of finite

extent. This then introduces edge effects and reflections from the top and

0bottom 
face of the filter the consequences of which have not been explored

analytically. Such studies appear to be nontrivial. The limited results from
the small experimental program at IBM seem to indicate that these effects
do not obviate the basic physical phenomenon in the layered composite.
The filtering effects (i.e., the stop bands) still appear to exist as the size of
the mechanical filter Is reduced to reasonable dimensions. This is an area

* of stud, which needs further investigation, both analytically and experi-

The inverse problem, that of designing a mechanical filter to produce a
. desired stop band, does not appear to be difficult if it is based on a model of

a periodically layered medium of infinite extent (i.e., assuming that edge
effects are negligible and that reflections from the top and bottom faces of
the filter are negligible.) The equation upon which mechanical filter design
is based can, for a large class of problems of interest, be simplified so that it
is easy to use in practice.
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IS IT DAMPING OR NONLINEARITY?

R.A. Ibrahim, Professor
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Department of Mechanical Engineering

Lubbock, Texas 79409

ABSTRACT

This paper sheds some light oni adversary effects of damping on the response
characteristics of mechanical systems. While damping is regarded as a
passive source for vibration control, it can cause instability to an origi-
nally stable system. Nonlinearity, on the other hand, is found to control
vibrations especially in dangerous regions of parametric instability.
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.~ ~.INTRODUCTION

Velocity dependent forces are classified as conservative or nonconser-
vative. Gyroscopic forces for example are conservative and they exert no
work. Damping forces, on the other hand, are nonconservative and the work
done by these forces is non-zero. If the work done is negative the damping
is a source of energy dissipation. If it is positive the damping becomes a
sources of energy and may cause a noise or self-excited vibration. The
general concept of positive damping is that it controls vibration since it
transforms a portion of the system kinetic energy into another form. The
damping ic an important parameter in the study of dynamic stability of
elastic systems. In most cases, stability criteria indicate that the
damping is very favorable in stabilizing dynamic systems. However, in cer-
tain situations the damping may result in dynamic instability of the system
response. 1- 7 For elastic systems there are several criteria involved to
examine their stability. These are:1

i. The static criterion due to Euler: This method predicts the cri-
tical loads above which bifurcation of equilibrium occurs.

ii. The energy criterion: The total potential energy of the system io
examined to define the critical load which is associated with the tran-
sition of the value of the potential energy from positive de finite form.

iii. The dynamic criterion: This method predicts free motions in the
vicinity of the static equilibrium position.

Hermann and Bungay2 established two instability mechanisms. The first is
known as divergenc (or static buckling) which is identified by a bifur-
cation of equilibrium configuration. The second is called flutter and is

", ' characterized by oscillatory motion. It was found that a conservative
system can be examined by either the static or dynamic criteria, while a
non-conservative system can only be treated by using the dynamic criterion.
However, the static approach is usually inadequate for stability analysis
of elastic systems especially those which are subjected to tangential for-
ces (known also as follower or circulatory forces). This fact was first
realized by Pfuger3 who investigated the stability of a cantilever column
under a follower compressive load by using the static criterion. He found
that the Euler method does not provide any value for the critical load.
Later, Beck 4 and Ziegler 5 , 6 considered Pfluger's problem and employed the
dynamic method and obtained bounded values for the critical load.

The introduction of energy dissipation such as linear damping is one form
to control vibration. While this is always true for most dynamic systems,

--_', the damping is known to be unfavorable for vibration isolation and could
have a destabilizing effect in some cases such as gyroscopic motion or
systems under follower forces. Figure (i) shows three mechanical systems
which become dynamically unstable if the damping is included in the

ixV equations of motion. The destabilizing effect of damping was first disco-
vered by Ziegler5'6 and Bolotin7 in two-degree-of-freedom systems. Fu and
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Nemat-Nasser 8 showed that if an undamped autonomous linear system with a
Jordan canonical stiffness matrix is unstable it can be made stable by
adding suitable terms with harmonic coefficients of small amplitude. If
damping is included the system becomes totally unstable. On the other
hand, if the stiffness matrix has a diagonal form the system may or may not
be stable.

The noise and vibration in shipboard stern tube occur mainly due to nega-
tive damping. Experimental investigations of Krauter and Brower9 have
shown that rotor speed, load, and tempereture are very important in
governing the frictional properties at the shaft-bearing contact zone. The
mechanism of stick-slip can occur when the friction coefficient decreasc3
with increasing the speed. Experimental measurements of damping coef-
ficient revealed that the damping changed continously with time because the
friction force was changing continously. It was concluded that the
occurrence of squeal which occurred syn.hronously with shaft rotation is
due to variations in structural damping. This variation was found random
and for certain levels it causes squeal or chatter.

PARAMETRIC INSTABILITY AND DAMPING

Parametric instability is one form of undesirable vibratory motion of dyna-
mic systems and occurs when the external excitation is normal to the direc-
tion of the system response. Mathematically, the exciation appears in the
equations of motion as a time-dependent coefficient. ?arametric
instability differs from the familiar types of instability, such as forced
vibration resonance in various fundamental aspects. It may occur at axial
loads considerably lower than the lowest static Euler buckling load over
some regions of excitation frequency and amplitude. For linear systems
parametric instability is a very dangerous phenomenon even in the presence
of damping. The inclusion of damping imposes a threshold value of the

Sexcitation amplitude. However, in certain situations the damping enhances
- , parametric instability and results in wider instability regions.

Evan-IwanowskilO demonstrated the damping destabilizing effect in a can-
tilever column subjected to u dynamic follower force F(t) as shown in fig.
(1a). Two types of damping were considered in the mathematical model;
these were a linear viscous damping and a Kelvin-type internal dissipative
mechanism. Evan-Iwanowski found that for suitable values of the system
parameters, the column exhibit parametric principal resonances, combinatton
resonance of the summed and difference types. It was shown that if the
damped system were unstable under a static load, it can be stabilized by
the introduction of a dynamic component whose frequency is very close to
the sum of the two natural frequencies of the column. Another interesting
result revealed that under certain conditions of the applied load the
column internal damping acted as a destabilizing effect. Figure (2) showsa sample of the stability/instability boundaries for various values of the
internal resonance parameter R.

The influence of time dependent aerodynamic forces upon the dynamic beha-
vior of a flat plate of infinite length was examined by Dzygadloll - 1 3 for
subsonic and supersonic flow regimes. Dzygadlo found that the form of
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instability regions of parametric resonance is influenced by the subsonic
flow in such a way that the regions became wider and move towards lower
regions of parametric excitation frequencies. For post-flutter speeds
these regions were found to shift away from the frequency axis, in a manner
similar to the damping stability effect. The regions of parametric insta-
bility do not exist if the flow becomes supersonic as long as the flat
plate has infinite length. For the case of a plate with finite length
exposed to supersonic flow, Dzygadlo found that the presence of air flow
would change the location and shape of the regions of parametric instabl-
iUty. The airflow was found to create aerodynamic damping and coupling
between the plate normal modes as Indicted by the set of equations of
motion

n

Y itY + w (I -2ca COsIT)Y n - Y+T~bn~ 1

whore Yn K Yn/L, Yn is the plate maximum deflection of mode n

L - Length of the plate,

L pa - 2
.- . 0 -/2(R SO), an -h p P n 21Tf2_ S

n X I H2  n XI .M 2 n27 2

_ l1- (-1)+ I for X # n

bnn {

0 fori = n

Co = amplitude of parametric load (inplane component)

a - speed of sound, T tU/L

Pa = density of the air, pp = density of the plate

C - damping coefficient of the place material

U - air speed,

XI  = 12(1 - v2 ) (L/h)2 p pa2/E

v= Poisson's ratio, E - Young's modulus

h = thickness of the plate

It was assumed thatl ei <1, SO < Scr 2
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The coupling coefficients bin satisfy the skew-symmetric condition bjn-bn
The stability boundaries as obtained by Dzygadlo are shown in Fig. (3).
Two dotted curves show the parametric instability boundaries under para-
metric loading and no airflow A-0, The first is located at excitation fre-
quency parameter r - 1. It is seen that as the Mach number increases the
first region diminishes and moves towards high values of excitation fre-
quency and amplitude. This trend is reversed for the second Instability
region. For lower values of Mach number this region is displaced away from
the frequency axis due to the effect of aerodynamic damping. If the Mach
number increases further the second stability region starts to expand and
moves towards smaller values of excitation frequency and amplitude until
the Mach number reaches a critical value where the parametric instability
region becomes maximum and touches the frequency axis. For H > Mcr the
instability region shrinks again.

*, The aerodynamic damping is found to play an important role In the
aeroelastic flutter and parametric vibration of helicpoter rotor blades.
Friedman!3 examined the stability boundaries of a hingeless helicopter
blade. He indicated that the physical reason for flap-lag instability is
the combination of the destabilizing aerodynamic damping and inertial
coupling of the flap and lead-lag degree-of-freedom, together with the low
aerodynamic damping in the lag degree-of-freedom.

PARAMETRIC VIBRATION AND NONLINEARITY

When the excitation parameters are located in one of the parametric Insta-
bility regions the system will vibrate with an amplitude which grows expo-
nential by growth amplitude until it collapses in spite of the presence of
damping. In reality the system does not fail because as the response
amplitude increases the system behavior is no longer governed by the linear
differential equations of motion. The system nonlinearities start to play
an important role and bring the system response into a limit bounded limit
cycle or cause a number of complex characteristics which cannot be
interpreted within the framework of the linear theory. These response
char..cterisitcs include multiple solutions, amplitude jump, internal reso-
nance, limit cycle and chaotic motion. In this regard the dynamLcist must
include the various sources of nonlinearities in his predictive model.

The nonlinearities may arise from two main sources:

1. Geometric nonlinearities due to large deformations such as large cur-
vature, end shortening effect, and inertias of concentrated or distributed
masses.

2. Material properties which exhibit nonlinear or multivalued
stress-strain relationships.

Parametric vibration of dynamic systems has been examined by several
investigators.10141 Hsu 16 pointed out that parametric excitation could
play a significant role in the dynamic behavior of shells, sometimes
directly (as in the case of external parametric excitation) and sometimes
indirectly, as in the case of autoparametric coupling. Autoparametric
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coupling refers to a nonlinear coupling of the system normal modes and
becomes significant when the relationship between the normal mode frequen-
cies is linear.

The autoparametric interaction of liquid sloshing modes with elastic motion
of a supporting structure has been examined when the normal modes of such
systems are coupled through quadratic non-linearity. It was shown that
with principal internal resonance (w 2 2l, where W1 and W2 are the first
two normal mode frequencies) the system experiences a complete steady state
zesponse. With three-mode interaction, however, the system may not achieve
a steady-state when the three modes have the frequency relation u 3 -

I +- I - Additional modes may also be included and their inclusion may
give rise to the multiple internal resonance where the interaction involves
irregular beating motions.

Tle system shown in fig. (4) consists of a rigid tank partially filled with
a liquid. The tank is supported on an elastic structure that can move
laterally under parametric or autoparametric resonance conditions. The
system equations of motion in terms of normal coordinates are found to
involve cubic nonlinearities:

2 .

+ 2l1w1 Yl + wtYl M Y Cos (nt+) (CitY1 + C2Y2] + l Y,')

2
2 + 242 22  + W2 Y2  Ycos(ilt+)[C2 Y1 + C22 Y2 ] + Y

where Yi are the normal coordinates of the system responses

4i damping ratios

Wi normal mode frequencies

YO vertical amplitude of base motion

Sl excitation frequency

phase angle of the excitation

4 i ( ) nonlinear cubic terms

C constant coefficients
Lj

The system dynamic response is determined when the supporting structure is
subjected to vertical harmonic motion. The effect of cubic nonlinearity on
the system parametric responses under prinicpal and combination parametic
resonance condition are examined by using the asympototic approximation
technique of Struble.

1 8
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The steady state amzplitude response of the systev in the neighborhood of
the first normaI modc parametric resonance condition 11 - 2wl is shown in
fig. (5) for various values of damping coefficients. It Is seen that the
response amplicude increases as the excitation frequency increases in a
manner similar to the characteristics of hard nonlinear systems. This
means that the p.rametric response of the first mode is governed mainly by
the structure nontinearity. The system respon-e near the second mode para-
mutric resonance condition n a 2w is shown in fig. (6). The response cur-
ves frillow the characteristics hard nonlinear systems. Fig. (7) shows
the rasponse amplitude curves near combination parametric resonance S 1
W + W 2 where w1 and w2 are the two normal mode frequencies.

The three figures (5-7) exhibit the jump and collapse phenonmena of the
response amplitudes at excitation frequencies above or below the condition
of parametric resonance depending on whether the system is hard or soft.
While the nonlinearity brings the originally unstable system Into a bounded
limit cycle the damping decreases the response amplLtude magnitude and
causes the amplitude to collapse at points of vertical tangency on the
response curves. Under parametric resonance it is Cound that the damping
is not adequate to control the vibration. It is the nonlinearity which is
responsible for the limitation of amplitude growth.
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Abstract

The statement, that the introduction or increase of damping or viscosity will
byall means lead a dynamical system to stability, is in many cases not true.
For this reason some engineering examples have been shown, where damping is
the cause of instability or where its increase even accelerates such an
instability. This shows, that the introduction of damping or viscosity into an 1
unstable system has to be performed ?ith great care, if one wants to obtain
with it a stable system.
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1. Introduction

The statement of the lecrease of vibration amplitudes by damping or viscosity
inherent in a mechanical or liquid system is in many cases superficial and will
lead to wrong conclusions concerning the stability of such systems. The fact, that
there exist many examples in engineering where this is not the case should be
made aware to any engineering investigator. A fev, of such systems will be treated
here, where tile first system is that of a rotating mechanical two-degree-of-free-
dom oscillator consisting of a mass attached to springs and dashpots, where the
increase of the magnitude of damping leads for natural frequencies below the
rotational angular velocity (spin) to accelerating instability. The vibration
amplitudes increase with larger damping. Tile same is true for a satellite boom in
the axis of rotation of a spin stabilized satellite. In addition a spin-stabili-
zed satellite with a liquid ring damper may be unstable if not designed properly,
i.e. if tile moments of inertia do not satisfy the condition Iz>I>, meaning that
the moment of inertia about the spin-axis must be larger than that about a per-
pendicilar axis through the center of mass. If this condition is not satisfied
the angle uf nutation increases, thus any damper and increase of its damping en-
hances instability. So will a linearly damped mass in an orbiting space labora-
tory under the action of the residual inhomogeneous micro-gravity field perform
motions, which exhibit unstable behavior, depending on the initial conditions and
the magnitude of tile damping. This means, that in this case of free fall tile mass
point 'ncreases its distance to the original location during the orbiting of the
space laboratory a fact, which may be of importance during space walks and other
experimental activities in a space laboratory. For two specific liquid systems
the fact, that damping leads to instability shall also be presented. This means,
that viscous liquid exhibits instabilities where frictionless liquid do show
stability. The first system is a solidly rotating liquid column with a free outer
surface in zero-gravity environment. In such a state the cylindrical liquid sur-
face, being able to oscillate, will be held together by the surface tension
force, which counteracts the centrifugal force. It can be shown, that for fric-
tionless liquid the cylindrical liquid column rotating about its axis with a con-
stant angular velocity go is stable for a much larger angular velocity than a
column2cqnsisting of viscous liquid. Writing for the rotational Bond number
gUo--p~a T, where p is the mass density of the liquid, T the surface tension and
2a tile diameter qof the liquid column, one obtains in the case of frictionless
liquid, that for Bo* rm(m+1), and in the case of viscous liquid, that for
BoS(m2-1) stability is guaranteed. The value m is the mode at which the system
oscillates, indicating that m=2 deforms the cross-section of the liquid column to
an elliptic form. For m=2 it is oi _ < 6 and Bo6 3. We notice also, that the sta-
bility boundary for viscous liquid is independent of the magnitude of the visco-
sity. Determining the roots s=a +i of such a system yields, that the instability
grows with increasing rotational Reynoidsnumber Tfe =na4/v and decreases with
larger surface tension parameter Ta/pv , meaning, tha? the diverging oscillation
amplitudes increase rapidly and that the oscillation frequency increases. A more
viscous liquid enhances the instability. While the wave in the opposite direction
of spin becomes more unstable, the wave in direction of spin exhibits more stabi-
lity, as is expressed by larger decay magnitude for increased rotational Reynolds
number. Increase of the surface tension parameter renders increased oscillatior
frequency and slightly decreased decay magnitude. The second liquid system, that
has been investigated, is an annular liquid column around an elastic center
shell. This system also holds quite a few surprises, in as much as if the liquid
is treated as frictionless liquid the coupled hydro-elastic frequencies are all
conjugate imaginary.
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This means, that the system oscillates in its real coupled frequencies without
decay or increase of amplitude. For a viscous annular liquid column around the
elastic shell instability appears in the motion of the free liquid surface as
well as in the shell motion. For a less rigid shell the liquid becomes unstable
if it is a very thin layer, while the structural root concerning the motion of
the shell becomes strongly unstable, exhibiting diverging instability for thick

liquid layers and for very thin viscous liquid layers the shell shows an oscilla-

tory instability. Since viscosity introduces phase shifts and additional excita-

tion t1irough the no-slip condition in form of aiigular motion, instability occurs

in a few situations which are not present for frictionless liquid, which renders,
of course, a quite different flow behavior of the liquid.

2. Instability of Damped Mechanical- and of viscous Liquid Systems

In many cases where one would think, that the introduction of damping in form of
an energy dissipating dashpot or in a liquid system the use of a more viscous
liquid would eliminate or at least ease an instability, one may be surprised,
that the opposite will occur. On the contrary the increase of damping increase
the growth of the unstable motion, i.e. renders increased diverging amplitude of
the motion. This is not only true in some mechanical cases, but also appears in
fluid systems, where similar effects have been detected. Some of these cases will

*be treated in the following.

2.1. Rotating Oscillator

A solidly rotating oscillator of two-degrees-of-freedom consisting of two equal
springs of stiffness k/2, dashpots with damping coefficients c/2 each in perpen-
dicular direction (Figure 1) renders with the kinetic energy

M -2
T =r + [Qo x](1)

where 6o=n and 'r=xT+yj, the dissipation function

c 2(2)

and the potential energy

V=k(x 2 +y 2 ) (3)

and no exterior forces with the Lagrange equation

d (OT aT +aD +_V=o, q=x andy

the equations of motion of the mass point

m[ x-2 J-nx] +cx + kx = o (4a)

.. * 2m[y+2P.0 x-y] + cy + ky = (4b)

2k and 2 we (s/P.o)t (S/o)t
With an m=i we obtain with x=Xe y=Ye as the solution of
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the system the characteristic equation (S -- ,

S4 +4Cw3 +2[2c 2 . 2+ ] $2S+4N( 2-1)S+(o2-1 )2=o (5)

With the Hurwitz-Criteria for stability, it may be found, that instability
occurs in the strip region o<i<I and Do in the (Z,C)-plane. The coupled four
roots of the frequency equation (5) (s=o+io) are presented in Figure 2a,b for
1 (ca/a) ) 10 and Figure 2c,d for o < (w/0o)<1 and various small damping factors
C. It mRy be seen that the vibrator becomes, for o <(w/00 ) <1 with damping un-
stable. The increase of damping accelerates the instability of two roots in as
much as it increases the amplitudes of oscillation. If the frequency ca is larger
Q all four roots are stable and exhibit with increasing damping damped oscilla-
tions with increased decay magnitude. So it may be noticed, that with decreasing
spin velocity 00 and increasing damping factor C the roots for (0/no >1 become
more stable, indicating stronger decay at a higher frequency (see s-plane, Fig.
2a,b). If the angular velocity of spin n is larger then oa=/k/7R two roots remain
stable and exhibit the same behavior as hose in the case o <co, i.e. show in-
creased stability as C increases and no/b decreases, while {he other two roots
become unstable and exhibit with increasing damping larger instability. This
means, that the diverging amplitude increases much faster at slightly decreased
frequency. This is more pronounced, if the spin magnitude no moves away from the
natural frequency o) of the spring-mass-system. For larger damping factors C>1
the roots are exhibited in Figure 3a through 3e. For o <w) the results are given
in Figure 3a and 3b, where again only the upper-half-plane is shown, since the
roots represent conjungate complex couples. With the increase of 0o the oscilla-

tion frequency magnitude reduces drastically, which also happens for an increase
of the damping factor C. The decay magnitude also reduces considerably with the
increase of the velocity of spin (Figure 3a). For increasing damping the os-
cillation shows a frequency, which decreases at enlarged decay magnitude. If,
however, the spin 0o is larger than a(g >Q one couple of the roots become un-
stable. The stable roots are shown in Figure 3d and express for increasing
damping C >o a slight increase of the oscillation frequency at a stronger decay.
Increasing o further means reduced oscillation frequency at lesser decay. The
unstable root couple is presented in Figure 3e, where an increase of damping
C>1 yields first an increase of diverging at smaller frequency and for even
larger r,-values a decrease of the oscillation frequency at a decreased divergence.
Increasing the spin magnitude no further renders increased divergence at higher
oscillation frequencies. This is also true for a satellite boom oriented in the
rotational axis of a spin-stabilized satellite, for which the equations of motion
read for a symmetric circular cross-section of the boom [1,2]2e 2. BF+El _F
32'a-or.+ 2- - 4  (6a)
a2 a t T _+~ az 4

_2+, F. 02 arl+EIa _
2t+no a-tgon -+ 2Co)T-t + N -o (6b)

at2  az

where E(z,t), n(z,t) are the bending deflections in x- and y-direction resp..
El is the constant stiffness of the boom and pA its constant mass per unit length,
while a is the constant angular velocity (spin) of t e satellite about the
z-axis ?Figure 1). This system is also unstable for An/(EI/pAk.4 <no, where An
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are the eigenvalues of the bending problem. In this case of a cantilever beam

X1 = 1.8751, X2 = 4.6941, X3 = 7.8541 etc..

2.2. Spin-stabilized Satellite

A spin-stabilized rigid satellite may, once disturbed, perform undesirable nuta-
tional oscillations. In order to dampen this nutational motion the satellite has
to be equipped with a damping device, consisting usually of a damped vibrator of
one or the other kind (also liquid damper). The provision of damping, however,
is by no means a guarantee for the decay of the nutational oscillations, unless
the satellite exhibits by its proper design the largest moment of inertia about
the axis of spin. If this is not the case, the nutational angle will increase
until the satellite spins about its axis of maximum moment of inertia, a fact,
which for the orientation of the original spin axis is of disastrous consequen-
ces. This may be seen from the simple treatment of the problem. if the satellite
is supposed to be spin-stabilized about the z-axis, where the satellite exhibits
Iz<Ix=Iy the equations of motion are given by the Euler equations (Figure 1)

Ix~x + . .Ix)nyn z = o (7a)

Ix~y + [Ix-lz3nxnz =0 (7b)

Izhz =o (7c)

with the solution

Dx=N os (vt+-); ny=N sin(vt+ c), rz=nZo (8)

N being the amplitude and v the frequency of the nutational motion.
The kinetic energy of the satellite is

T=.[Ixt2 l Izz 0 (9)

while the angular momentum D is gven by

D2 = I2N2 +z1222 (10)

Elimination of yields witn IxN=D sin 6 (6 being the nutational angle)

2T =T D 1 ,,x sin26) (11)

z

which is exactly valid for a rigid satellite. Since, however, a damping device
should be light and small, this relation may also be employed for a satellite
with a damping device. Thus the kinetic energy will render a function of time
now, i.e. T=T(t). The time derivative yields
_ D 2

-= z- sn 8cos .8 (12)

x z
which for the dissipation of energy through the damping device renders a nega-
tive value, i.e. T<o. Thus for t1.2 above mentioned satellite Iz-lx<o, the
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value 6 must be larger zero (8>o), indicating inspite of the damping a growth
of the nutational angle 8. The satellite must therefore be designed in such a
way, that I> I.,, meaning, that the moment of inertia about the spin axis should
be the largest. Then 6<o, which means, that the nutational angle decreases with
time, bringing the spin axis back to its original orientation.

2.3. Linearly Damped Ilass in a Space-laboratory in Orbit

The case of the Sjee fkll with linear velocity dependent friction in an orbiting
space laboratory renders without exterior forces the equations for relative
motion with respect to the center of mass of the space laboratory (c/m a2Co)

X+20 iq-%n 0 X= (13a)
00

+ 2[Q + o = o (13b)
-2no 302z + 2 o o (13c)

0 0 0~

The coordinates (x,y,z) are connected to the center of mass with x in the flight
direction, y perpendicular to the orbit plane and z in the orbit plane pointing
from the center of the earth into space (Fig.4]. The above equations are obtained
from the Lagrange equation with the kinetic energy (1), where r=xT+y3+(r +z)k,
n=0 it (jo eipg the radius of the circular orbit), the dissipation function

D=(/2)( +q +z) and lewton's attraction potential

V ~zY x2+y .z

in which .i represents the gravitation parameter 4 =yM (M as mass of the earth and
y as the gravitational constant). It may be noticed that the motion in y-direc-
tion is independent from that in x- and z-direction and performs a damped motion.
The coupled motion in x and z depends on the damping magnitude C and the initial
conditions. The characteristic equation readss{ 3  2 1'- I

S + 4 r(-L) +-142 (s 6. = o (4
o 10 C10

The solution is given by the expression

x=A+Be 2 +ces 3t +DeS4t (15a)

S St S s t (l bs1t 13 3 1 s4 s4tz= B[j (-)+Cle C[j(-F)+r.]e -DC((o)+C~e (15b)

0 0
-Cot --- , _.,,
y( YoCOS( /1.6 0 nt)... I_ ../.. si n(l 1. O t)) (15c)

where the integration constants are given with the initial conditions
(x Z (y0 $ z o) Yo ) by
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A = xo+(z o +U;/ (16a)

0 0 *2 

1 sX sS X Z XB1 s1 {( __1s4 1 1l0Xo s3 -s4 x , o  xo 4.2(_+L)) 1b
_-s2 s3 o 34 1(z  o T o T  -- o no 3o

( 3 (2 _ _- 0 0 0 0 0

0 o 0(
1 s2 S3  2 , o.+.s2 s+ 4) Xo Z+(zo + Xo))

( 10 C4 0 0 0 0 0
c 2 s 3 s3 s N ni o . N N N 2N c ) c

0 0 0[ 0
* 0

1 1 2 3 15 S
D= 2 4 3 4 '%% "°2%' 3% % 2(zo+,X% ))-  - (16d)

no00 00

The result of the motion of an object (space walking astronaut, satellite or
structural part of a space station to be assembled in orbit) is shown for the
"free fall"-case, i.e. without initial velocities (no o0) in Figure 5 for
various dampings. We may see, that without damping, the object performs during
each orbit a "hopping" motion and lags for an initial z >o behind the space
shuttle, while for z <o it will move ahead of the vehicle. Including a linear
damping force will nSt make the object move less far away from the space shuttle
during one orbit, as one may expect, but it will move it with an increased magni-
tude of damping r farther away from the vehicle, as may be seen in Figure 5.
This is contrary to what happens in free fall on earth, as may be seen from the
free fall results (1o=o)
Z=Zo- 0 2 without friction

*1 ~ ~ 0 1

and

Z=Zo- g t+ 2 (le (c/m)t) with friction.

After one orbit the object is without experiencing friction about 349 m awayfrom the center-of-mass of the space shuttle, while for C=o.o5 the distance 'is

already 777 m, if the object was set out at zo=lo m. This also is quite a
surprising result.

2.4. Rotating Liquid Column

An infinitely long liquid column exhibiting no z-dependency (two-dimensional
case) is rotRting solidly about its axis of symmetry (z-axis) with the angular
velocity '. The free liquid surface at r=a is held together by surface
tension T(?ig.b), which provides the restoring force, if the surface is distur-
bed. The equations of motion for frictionless liquid in body-fixed coordinates
are the Euler equations for a rotating system, which are in linearized form in a
zero-gravity environment given by

-v + 2[n xv+[x(doxr)1 +-grad p=o (17)

FLIT
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Since the liquid is considered incompressible the continuity equation reads('V =uj'.

div V=o (18)

The introduction of an acceleration potential

.- 7 n~r(19)

yields with the free surface condition

96 T au(0
3 Cau + (u + -u,.)=o at r=a (20)

and with the velocities and acceleration potential in form of
u(r,Q, t )=U(r )si n(cat +rV)

v(r,(o, t)-V(r)cos(wt +nvo) (21)

X( r,(P, t)P(r) cos (cat +M~p)

where P(r)=mWrm

finally the natural frequencies of the system. They are

~ 2± rT(m -1)0 = I/14M]} Pa 3 0 2 (22)

which exhibits for
23

2 TM pG)0a
no m (m+l) or Bo=--T->m(m+l) (23)

pa

instability where Bo.is the Bondnumber. For a viscous liquid the Euler equation
(17) has to be substituted by4 the Stokes equatonl-

-+ 2[ 0 x Vi+[o x (50 x r) lrad p +vcurl curl V=0 (24)

The centrifugal- and Coriolis acceleration term may be written as
122 (5[HO x x 7F)] =-grad (-7 or) (25)

and Log1r110
2[5 0 x;] -grad (2noy) (26)

where IF represents the streamfunction and renders
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u=-l!-and v="' (27)
r 3 ar

We finally have to solve the differential equation
1 =0 (28)

where A represents the Laplace operation in polar coordinates.
The boundary conditions are

-- r a ,v,+1u, o for rza (29)
r-P aJ = o  f

and the free surfac condition
a 2u iT- a2u,

R~a +po -2n- +-[ at r~a (30)

With the stream function

Y(r,p,t) =e st  {Amrm+BmIm(lF* r))eim P (31)

we obtain finally the frequency equation o2 2
6+42 4  ~(21 2  Ta 4T"a 22 2 Q a 2

im(X)(x x+4m x4(m2_l)x[8m+--. +--2r (m .-1).(4m+x )[m(----) +

noa2  2 2 Ta 2 2 a2  D a2 22 _( -- ) ]=2xIm.(x) •x 4+2x2m(m2 1) a - _-1)-2ix (32)

where x=a For vanishing viscosity v-o, we obtain the above result (22) for
the naturalfrequencies of the frictionless liquid. From the complex frequency
equation of the viscous liquid the stability boundary is found to be (s-o)

T-2 =Re2=Ta (33)

where Re =- is the rotational Reynolds number or Re gTa the Taylor number.

This means, that for
2 T 2 2_

2 (m2_1) or Bo m-1 (34)

the rotating liquid column exhibits instability. It may be noticed that this
condition is independent of the viscosity and that the existence of viscosity,
whatever magnitude it may have, renders instability at a much lower rotational
speed, than for a frictionless liquid. It may be noticed from the results, that
due to the rotation of the liquid column, the roots are no longer symmetrical to
the real axis.
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This means, that the surface waves in the direction of spin exhibit a different
frequency than those in the opposite direction of spin (Fig.7). This latter wave
becomes due to the Coriolis force finally with the increase of the rotational
Reyrolds number unstable, while the root in the direction of spin renders even
-better stability by the increase of spin (Fig.7a). It performs for increased
e =(Ooi/v) oscillations of larger frequency with a faster decay. For larger

surface tension the freauency of oscillation increases, while the decay magnitude
decreases. The root in the third quadrant, representing the wave behavior in the
direction opposite to the spinning of the viscous liquid column decreases at
first its frequency and decay magnitude with increasing spin o and becomes
finally unstable (Fig.7c), i.e. the root migrates across the origine of the s-
plane into the first quadrdnt. With increasing rotational speed the oscillatory
instability increases, exhibiting larger oscillation frequency and larger diver-ging magnitude. For increased surface tension parameter Ta/pv' we obtain a
small,.r oscillation frequency with a much less strongly diverging magnitude of
amplitudes. For a more viscous liquid both the surfacetension parameter and the
rotational Reynoldsnumber decrease, indicating that the unstable root renders a
slightly decreased oscillation frequency at less diverging amplitudes. For the
stable root we obtain with the increase of viscosity an oscillation with in-
creased frequency at less decaying amplitudes (Fig.7a). The results are also
presented as real- (Figure 8a) and imaginary part of the roots for the elliptic
cross-seltional mode m=2 (Fig.8b) as a function of the rotational Reynoldsnumber
?fe =(loa /M.) For the root representing the wave in the direction of spin we
notice, that with increasing Reynoldsnumber the real part of the root for 102
is negative (stable root) and increases its magnitude, indicating, that stronger
decay (Fig.8a) appears with a higher oscillation frequency (Fig.8b). For in-
creasing tension parameter Ta/pv the oscillation frequency increases at a lesser
decay. In Figure 8c we see the real- and imaginary part of the root, representinv
the wave opposite to the direction of spin. We notice, that at the given value
(33) the root becomes unstable. Both real- and imaginary part vanish at this
location. With the increase of the Rceynoldsnumber the oscillation ftequency in-
creases in the unstable region with increasing divergence. With larger tension
parameter, instability happens at a larger e and renders smaller oscillation
frequency at a lesser divergence. For an increase of the viscosity we observe
higher oscillation frequency at a stronger divergence.

2.5. IHydroelastic Vibrations
Perturbations in an annular liquid system around an elastic center structure
leads to a coupling of the elastic shell and the liquid with a free surface
(Fig.6). This hydroelastic system will exhibit coupled frequencies, that shall
be determined for ideal (frictionless) liquid o as well as for viscous
liquid' . The liquid is considered incompressible, i.e. div v=o, and the
shell shall exhibit in a perturbed state only small displacements and velocity
con1.onents. For frictionless liquid (v=grad0)we have to solve the Laplace
equation

aO =0 (35)

while for viscous liquid, we need to solve the Stokes equation

aiv-+grad p+v curl curl v=o (36)
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Hietreaj tht o-t ?siont case ie. oberve-n e en nc o the treeV=ueT emeIonal conaitio u- a , .. Is th el ocity
liquid :urface elevation, the dynamic condition at the free liquid surface at
r=a reads
a2 T - 2u

-T =o for frictionless liquid (37)pa ap

or

a 2 2
-- +T[u + U] =o for viscous liquid (38)

For viscous liquid the additional condition at the free liquid surface of
vanishing shear stress zr=o yields

a v .Iau
r-L(-) +! = o at r=a (39)

In these equations T represents the liquid surface tension, IL the dynamic
viscosity, p the pressure and p the density of the liquid. If we denote the
elastic deflection of the shell structure by E in radial- and n in angular
direction, the cylindrical shell of infinite length renders under the assumption
of no motion in the z-direction the equations

-2  2  4 - - 22
h2 at~pl- )bI b2 for frictionless liquid (40a)

2bb DP aua

(p-2vU) for viscous liquid (40b)

2 for frictionless liquid (40c)
g~a np(lv )b alnu

E b ' r ." 1 for viscous liquid (40d)

These are the Donnell-Mushtari shell equations, in which h is the thickness of
the shell, V the Poisson ratio, E the moduj s of elasticity, b the radius of the
shell, p its material density and U=Eh/(1-V). It may be noticed, that these
equations are coupled with the liquid motion by the terms on the right-hand side,
where the viscous liquid exhibits a stronger coupling. The coupling of the shell
to the liquid is performed by the boundary conditions
=u and a-v (additional for viscous liquid) at r=b (41)

The solution for frictionless liquid is given by the velocity potential
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q o.. t) -M1 s

0(rmp,t) =m L [Amrm+Bmr'Ie s (42)

with which u = (a/ar) and v -(/raq) may be obtained. For viscous liquid the
stream function (u=-(1/r)(a'/), v= (aw/r)) renders the expression

(,,t) =- 1. T fmrm +_ffmlm(/_Zr) +-Umr'm +'UmKm(4 r) ) e i m +  (43)

where s =a+iw is the complex frequency. The deflections of the shell are

=- Xmei (44a)

T)(N, t) Z7 e m i m~ s t  (44b)

Introducing the above given boundary conditions (37), (41) into the equations40a) and (40,') renders for the frictionless case four equations for the un-

nowns A o B . Xm and Y. and forothe Y = case six equations for the deter-
mination"of The Tonstan~s m, Vmtm, No, Xm and Ym. The vanishing coefficient
determinant represents in either case the frequency equation. From these 4
frequency equations the special cases og a liquid around a rigid center core4 ,
a simple elastic shell (without liquid) , may be easily obtained. The
frequency equation has. been evaluated numerically for the various parameters of
surface tension Toa/pv2, of density ratio p/p, shell wall ss ratio h/a,
diameter ratio k = (b/a) and stiffness parameter y(1-: )2 /Ea. The resultsare given as real- I-) am imaginary part (-)of S = (oa4/v)+(i a/v) as a
function of the ratio of the shell diameter to the liquid diameter k=(b/a).T'iis means, that if k is in the vicinity of k=1 the liquid column is a very thin

one, while with decreasing magnitude of k the annular liquid column becomes
thicker. Thp - --rical evaluation has been restricted to the mode m=2, for which
the natura ncy fo"' a frictionless liquid around a rigid center shell is
representeL , the following figures. The natural frequencies of the non-
viscous liqu x ;roportional to the square root of the surface tension To,
proportional inverse of the square root of the density of the liquid,
It decreases . increasing diameter ratio k=(b/a). The uncoupled natural
frequencies for m:2 and viscous liquid around a rigid center shell is marked
with y=o, which expresses nothing but the limit case of the modulus of .
elasticity E-.. The uncoupled frequencies of the elastic shell with no liquid
around it, are shown as horizontal lines (-.-.-), exhibiting only an imaginary
part. We are now interested in the coupled frequencies of the system, which
yield for each mode two coupled liquid frequencies and four coupled structural
frequencies. The coupled liquid roots are presented in Figure 9 for the density
ratio p/p=2, i.e. a shell density of twice the density p of the liquid, for
a thickness ratio of the shell of h=o.ola and a tension parameter Tna/pv4 = 1000.
The mode shown here is that of m=2, which meags the vi ration in an elliptic
geometry. The parameter y was taken to be 10" and 10" . The roots for a non-
viscous liquid around a rigid shell are given by S , which is a pure conjugate
imaginary root. It shows for increasing diameter rgtio k=(b/a) first a slight
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decrease of frequency, which for larger k-values (k<l) then rapidly decreases
to zero. The curve marked with y-o is the oscillatory root of the viscous
liq2 id for a Misid center shell, since y--o means, that the elasticity paramgter
(Ea -/p(1-*2)v k )-..,. This renders the roots as obtained already by Bauer in .
It exhibits a damped oscillatory root with a decay magnitude shown for the real
part (-) marked with y-o. With decreasing liquid thickness the decay magnitude
increases, while the oscillatory part (---), i.e. the frequency, decreases. At
about k=(b/a)w0,83 the frequency of this damped oscillation becomes zero,
indicating that in the range of 0.83k<1, i.e. for the smaller liquid thicknesses,
the liquid layer is no longer able to oscillate, but merely performs an aperiodic
motion, which with increasing k-magnitude exhibits less decay. For thin liquid
layers therefore the aperiodi.. motion of the liquid persists for a long time,
but it does not oscillate. For a rather stiff shell with y=10- the coupled
liquid frequency increases with decreasing layer thickness and shows at k0.8
that the liquid motign becomes unstable. Similar results are obtained for a less
stiffer shell (y-1O-'), where with increasing k-value the oscillatory frequency
increases, while at IO.97 the liquid gecomes unstable. Figure 9a exhibits the
real- and imaginary pat of S for y-10 as a function of the diameter ratio k.
The values S of the frictionless liquid (-.-.-j and the damped frequency for
the viscous ?iquid around a rigid center shell (yxo) are shown again for
convenience. In addition the coupled structural frequencies are presented. The

--.- line represents the uncoupled structural frequency, which decreases with
increasing shell radius b. We notice that the coupled liquid frequency increases
with increasing k, while its decay decreases slightly until at k ZO.8 the real
part of this root becomes positive, indicating an oscillation of high frequency
with increasing amplitude, i.e. oscillatory instability. The coupled structural
root exhibits for a thick liquid layer a very strong decay at a high oscillation
frequency. With decreasing thickness of the liquid layer the decay magnitude
decreases rapidly, indicating a longer oscillatory decay motion with a much
smaller frequency. It may be noticed, that the oscillation frequency of the
coupled structural motion is much lower than that of the uncoupled shell motion.
Finally at about k>0.73 the shell ceases to oscillate and perform for k0.73
an aperiodically damped motion. The second structural frequency is very large
and not in the range of the numerical values presented in Figure 9a. In Figure
9b and 9c we present the coupled roots for an elasticity parameter y=10 4.
The uncoupled structural frequencies are both shown by the -.-.- lines. The
liquid frequencies So for frictionless liquid and that for a viscous liquid
around a rigid shell (y=o) are again presented for convenience, It may be
noticed that the structural frequency is unstable for all k-values and that it
is a diverging instability along nearly all the range of k. In Figure 9c the
range of 0.97<k<1 is shown in addition. It is seen that the coupled structural
frequency (marked as (2)) is divergingly unstable and becomes oscillatory un-
stable above koO.977. The coupled liquid root is shown and marked as (1). We
dectect the previously mentioned instability and a strong decrease of the
frequency. The physical significance of the here obtained results calls for some
discussion. The main interest appears in that we observe a case where viscosity
provides instability, where as an ideal liquid renders always stability. Small
perturbations of the structure lead to perturbations of the liquid surface and
vice versa, where in the case of a viscous liquid (for which different phase
relations appear) the flow field of the liquid is quite different to ideal
liquid, which exhibit a slipping in angular direction. These perturbations
result into liquid surface displacements, thus changing the surface tension
restoring force, which in the case of viscous liquid through the additional
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disturbance in angular direction by the motion of the elastic shell is not
adequate to dampen out the perturbation. A similar explanation of the in-
stability of the coupled motion of the elastic shell may be stated. Figure 9b
shows that the root belonging to the angular n-motion becomes unstable and that
the instability flips from a diverging one to an oscillatory instability for
thin liquid layers, where the oscillatory interaction of the liquid motion is
more pronounced. These effects (phase shifts and additional excitation of the
liquid through the angular motion of the elastic shell and vice versa), which
are not present for frictionless liquid seem to be responsible for such in-~stabilities.

In conclusion, we may state:

a) that for a less stiffer shell (y-t0 -4) the coupled liquid root becomes
unstable for very thin liquid layers k4O.97,

b) that for a stiffer shell (y--10 8) the coupled liquid root exhibits an in-
stability for thin layers k>O.8 and becomes stronger unstable for thinner
layers,

c) that for a less stiffer shell (yw10"4) the structural root for the angular
direction becomes strongly unstable, exhibiting diverging instability till
i=stabilitd then for even thinner liquid layers k>0.977 an oscillatoryinstability.
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ABSTRACT

Optical systems used in advanced technology devices are required to
provide mirror planar and angular stability to the micro-inch or micro-radian
level. These systems may also be exposed to dynamic, impulsive diaturbances
that produce responses that must be damped out In a few milli-seconds to meat
system performance requirements. This presentation will discuss the detailed
design, fabrication, and testing or a set of molybdenum mirrors that employed
viscoelastic constrained layer damping to produce the required dynamic
performance levels. The mirrors were designed using finite element analyses
to obtain modal properties that were utilized to predict dynamic response of
the mirror. The damping material was applied in two orthogonal planes in
order to provide the required damping for the complex modes identified.
Design constraints required that the damping material be applied to only 55$
or the mirror surface area and in non-optimal locations. Damping levels were
predicted from the finite element model using modal strain energy techniques.
Structural damping levels of approximately 10% were predicted from this
analysis. Following fabrication of the mirrors, impact tests of the assembled
mirror were conducted to verify the predicted damping levels. Excellent
agreement with the predicted damping levels was obtained, and the validity of
the design approach was confirmed.
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INTRODUCTION

Optical systems used in advanced technology devices are required to
provide mirror planar and angular stability to the micro inch or micro-radian
level. These systems may also be required to resist impulsive pressure loads
that can produce very large surface distortions that must be eliminated very
rapidly to meet system performance requirements. Only two viable solutions
have been found to deal with this situation. Either enough stiftness must be
introduced into the system to prevent the initial distortion, or enough
damping must be incorporated into the design to eliminate residual vibration
within a few milliseconds before succeeding impulses occur. While the
stiffness approach is the more conventional and easily implemented one, the
job of limiting the initial distortion of a large surface exposed to a
sizeable pressure to microinches is formidable. If, for example, the mirror
cros section were made very thick to prevent handing diatortioh, deflection
in the thickness direction due to compression longitudinal modes could become
a problem. Furthermore, the mass of such a concept can become so large that
supporting structure cannot be designed stiffly enough to prevent low
frequency rigid body modes from occurring. The damping approach, however,
offers the potential of reducing distortions to acceptable levels before the
following pressure pulse is applied, even though initial distortions are
thousands of times larger than allowable levels. The two primary challenges
to implementing this strategy are the very high level of damping required to
succeed, and the difficulty of Incorporating this damping into a structure
which must exhibit creep stability to a few microinches.

This paper will discuss the details of the design, fabrication, and
testing of a set of molybdenum mirrors that employed viscoelastic constrained
layer damping to achieve the required dynamic performance levels. The mirrors
were designed using finite element and modal strain energy analyses to obtain
the modal damping values required to predict the dynamic response of the
mirror. The damping material was applied in two orthogonal planes to control
coupled bending and rigid body vibratory modes in all six degrees of freedom.
Design constraints required that the damping material be applied to only 55%
of the mirror surface area and in non-optimal locations. Furthermore, mirror
shapes were irregular and of variable thickness, adding to the complexity of
the analysis task. Modal loss factors of approximately 10% were calculated
for the critical low frequency modes of the final configuration, leading to
predictions that performance specifications would be met. Following
fabrication of the mirrors, impact tests of the assembled mirror were
conducted to verify the predicted damping levels and transient response to
impulsive loads. Excellent agreement with the predicted damping levels was
obtained, and the validity of the design approach was confirmed.
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DISCUSSION

Dynamic Pressure Loads

The environment in which the optical elements of the system must live is
illustrated in Figure 1. The plot of pressure as a function of time indicates
that the pressure suddenly ncreases abruptly, decays irregularly for about 2
ms., is quiescent for about 15 Ms., and then repeats the pattern. The diagram
of the mirror and incident pressure wave indicates that a plane wave strikes
the surface in a correlated fashion. The exact duration of the rise time of
the pressure pulse is unknown and varies from pulse to pulse, but it is known
to be short compared to critical mirror vibratory periods. Thus, for the
purpose of analysis, it was assumed that the rise time is zero. This
assumption, of course, means that all vibratory modes will be excited no
matter how high the frequency. For higher order bending modes this assumption
can significantly overestimate the dynamic response, but the higher frequency
modes decay more severely in a fixed time period and tend to be less
problematic. In order to account for the manner in which the shape of the
pressure pulse couples with the shape of a particular vibratory mode, the
generalized force concept is used. The procedure involves weighting the
pressure at a particular location with the magnitude of a particular modal
vibratory response and integrating over the mirror surface to determine an
effective force. Equation (1) describes the exact procedure used1

a b
Qi a f f P (x,y,t) Wi(x,y) dx dy (1)

0 0

where Qi - generalized force for mode I.

P(x,y,t) - pressure at position x, y for time t

Wi(x,y) - mode shape at position x,y for mode i

Figure 2, for example, shows the mirror second bending mode excited by the
incident pressure wave. Due to its symmetric nature, equation (1) would
indicate a zero magnitude generalized force for this mode. However, in

reality, modal coupling usually precludes exact symmetry, and generalized
forces of some magnitude exist for all modes.

The initial deflection of a mirror surface after exposure to a single
pressure pulse is large and takes the shape of the vibratory modes. Figure 2

shows that the initial deflection is on the order of 1000 times the allowable
residual, and that parent material damping is inadequate even for a very thick
mirror. However, the .05 loss factor curve shows that if 5% structural
damping could be incorporated into the mirror, the distortion goal could be
met with a reasonable mirror thickness.

A trade study was carried out to balance the required strutural
stiffness, the resulting system weight, and fabrication cost. The result of
that study was a decision to utilize conventional optical construction to
minimize weight and fabrication cost, and rely heavily on a well-designed
effective damping scheme.
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Design Constraints

The design constroints Imposed on a dynamic optical structure are
unprecedented in severity or either damped structures or optical structures.
The performance requirements for the damping concept are so severe that the
final design must take full advantage of the constrained layer operational
concept, and yet must satisfy all standard optical structural criteria such as
long term stability and the absence or creep. The primary design criteria are
the rollowing:

1. Total allowable distortion from vibration, thermal, polishing,
gravity, and creep must be <4 pin.

2. Damping must attenuate an initial 4000 pin. distortion to 0.11 pin.
in 15 Ms.

3. The optical mount must isolate the mirror thermally, but also damp
rigid body bounce and tilt modes effectively.

4. Polishing must not affect the damping material or cause any
permanent structural shift.

5. Gravity loading must not cause significant distortion when mounted
in any position.

6. Creep of the viscoelastic material (VEH) must not result in figure
change exceeding 0.5 pin.

The first step in designing the damped optic was to select the mount
configuration, because the mirror/mount system geometrical constraints are
affected and the mount itself must be damped. Figure 3 illustrates the
results of a thermal sensitivity study which was carried out to select the
mount concept. Both a three point mount and a tangent mount were considered
because both are determinate and both provide thermal isolation from the
environment. Isolation is defined here as an attenuation of support structure
deflection due to small room temperature changes before it reaches the mirror
surface. Figure 3 clearly indicates that only the tangent mount concept can
limit thermal distortions below the 4 pin. allowable.

Having selected the tangent mount configuration, it is clear that the
damping constraining layer effectiveness must be significantly compromised.
Figure 4 shows the tangent mount concept, and it is evident that the
cylindrical shape correlates poorly with the rectangularly shaped mirrors. The
tangent mount's cylindrical shape is dictated by the cylinder die-out
phenomenon, in which a displacement or load imposed at the base dies out along
the cylinder axis. A rectangular mount shaped to fit the mirror configuration
would provide desireable flexibility at the walls, but would be too stiff at
the corners. Thus a circularly shaped mount is required and the constraining
layer must be somehow fitted in. To achieve maximum stiffness, the
constraining layer should be continuous. Such continuity, however, would
require penetrating the tangent mount cylinder, severely reducing the ability
of the mount to resist rigid body mirror vibration. If the mirror surface
were to be completely covered it would have to be done in a discontinuous
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fashion. That is, a circular piece of constraining layer could be fitted
inside the tangent mount cylinder, and an additional piece could be added
outside the mount cylinder. However, finite element analysis indicated that
such a scemented concept was not as effective as one where a single ciroular
piece was used inside the tangent mount. The portion of the constraining
layer outside the tangent mount was ineffective structurally and served
primarily as parasitic mass, which caused a deleterious reduction in resonant
frequency. Thus the most effective configuration of mirror, mount, and
constraining layer relegates as much as 45% of some mirror surfaces to a free
layer damping concept, a much less effective scheme, or to no damping at all.

Design Analysis

The need for an accurate cost-effective analysis scheme is all the more
necessary because of the constraints placed on the damping design. Not only
is a high level of overall modal damping required, but whatever scheme is
employed will inevitably be compromised by the partial coverage requirement.
It is essential, therefore, that the analysis method employed to calculate
modal damping be accurate enough to account for the VEK partial coverage, the
irregular mirror and constraining layer shapes, and the variable thickness
mirror geometry. Only then would the designer have the necessary information
to know whether a particular concept is good enough or whether redesign is
required. Figure 4 illustrates and summarizes the difficulties of predicting
modal damping accurately for a potential configuration.

Closed form formulae were found to be adequate and very useful for the
conceptual design phase. The objective for this phase was to carry out trade
studies to optimize the thicknesses of the mirror and constraining layer, and
to optimize the thickness, modulus, and 1033 factor of the V M. For this

purpose, equations similar to equation (2) below were ultilized

B 2Yx
n (2)

1 + ( 2 + Y)x + (1 + Y)(1 + B 2)X2

where n - loss factor of the composite panel

Y - a stiffness parameter dependent
on the modulli and thickness of
elastic layers

x - a shear parameter

An additional factor which constrained the conceptual design was the inability
to inexpensively fabricate lightweight configurations of the primary mirror
material, molybdenum. Lightweight configurations can enhance damping
performahce by increasing resonant response frequencies and strain levels of
the VEM. However, it is not a simple matter to fabricate a lightweight
sandwich core from molybdenum, so all designs were confEned to configurations
using solid plate stock.
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During the detailed design phase, it was necessary to determine the
actual dynamic performance of the concept selected during conceptual design.
The analytical assessment must be accurate and must account for the actual
geometry and location of all components of the damped optical structure. In
addition, funding constraints did not allow expensive and time consuming

*techniques such as complex frequency-dependent eigenvalue analysis using a
high density 3-D finite element mesh. To accomplish these conflicting
objectives, it was decided to use real elgenvalue finite element analysis to
calculate frequencies and mode shapes, and to employ the modal strain energy
(KSE) method to determine the overall effective damping for each vibratory
mode. Figure 5 shows a typical mode shape for a 3-D model employing
reflective symmetry. The KSE approach allows the use of real eigenvectors to
calculate modal damping, and has been widely used successfully3 5. The
actual MSE procedure is characterized by equation (3) below6 :

(r) SEi(r)
n -ni  (3)

SE(r)

where ni - material loss factor for the i'th
material

SEi(r) - strain energy in the i'th material
when the structure deforms in the
r'th mode

SE(r) - total strain energy for the r'th mode

The use of the MSE method produced some performance predictions which were, at
times, surprising. But in all cases where calculations indicated worse
performance than desired, application of the constrained layer formulae
corroborated the prediction. For example, when HSE analysis predicted poor
damping performance of the tangent mount in the bounce mode, hand analysis
revealed that the constraining layer was too thin to constrain the VEM being
used. So the mount constraining layer was properly ,'esized, and MSE
reanalysis predicted an improved and adequate result.

The pressure time history was handled by assuming a step function with
zero rise time and a duration of 2 ms. Coupling between the deflected mirror
shape and the plane wave pressure pulse was determined using the generalized
orce described in equation (1). Since the pulse duration was long compared

to mirror vibratory periods, static analysis with the generalized force was
used to calculate the initial deflection for each vibratory mode. Then the

rate of decay and residual vibration for each mode was determined using modal
properties and the single degree of freedom transient response expression
listed in equation (4) below 1,7 :
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IW-F -zwt HCO(vdt) + Wn SIN(v d tj
K 

Wwhere y(t) - response of single d.o.f. at time t

F0 M magnitude of force step function

K - modal stiffness

wdt wn - damped, undamped natural frequenoles

z - percent viscous critical damping.

Finally, the total mirror response was determined using superposition of theindividial modal responses

Y(x,t) - Wi (x) qi(t) (5)

where y(xt) - physical response at position x, time t

Wi(x) modal response o i'th mode at position x

qi(t) generalized coordinat% of the i'th mode at time t

This method of calculating total mirror response neglects any mode
transformations which may occur due to coupling of complex vibration modes.
However, it was felt that neglecting such coupling would be conservative, and
the cost of complex transient response analysis was avoided.

Final Configuration

The final configuration of one of the damped optics being designed is
illustrated in Figure 6. This figure shows the outline of the circular
tangent mount, the bolt pattern attaching the constraining layer to the
mirror, and the large amount of undamped mirror surface area located outside
of the tangent mount cylinder. Also shown are the variable mirror thickness,
large constraining layer inside the tangent mount cylinder, tangent mount,
tangent mount constraining layer, and viscoelastic damping material on the
mirror and mount surfaces. The mirror constraining layer thickness was made
equal to the mirror thickness for maximum efficiency, and was bolted to the
mirror with spacers and Bellville washers to control creep effects. The metal
spacers were made slightly thinner than the 0.002 in.ISD 112 damping layer to
allow full contact when the attaching bolts are torqued to specification, but
to eliminate loosening of the assembly as the VEN stress-relaxes. The
Bellville washers are used to retain bolt preload in the face of a creeping
VEK. The mount constraining layer is unusually thick compared to the mountI thickness due to the difficulty in damping the longitudinal bounce mode. This
constraining layer is segmented to allow assembly after permanent attachment
of the tangent mount to the mirror. Bolts are used for attachment to the
mount to ensure the long term integrity of the constraining layer, VEM, and
mount assembly. The rear plate is used to evenly distribute loads due to
thermal mismatch between the molybdenum mount and steel support structure.
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Performance predictions are summarized in Table 1 below:

Table 1

Frequency, Mode Modal Structural Displacement, pin.
Hz. Damping, % Initial Final

980 Shear + 15 100 0.10
Bending

1360 Bounce + 11 1060 1.20
Bending

1630 Bending 16 270 0.001

2670 Bending 10 630 0.002

Overall residual deflections after 15 ms. following the previous pressure
pulse were estimated to be 1.2 pin., or about 30% of the total allowable
deflection.

Performance Tests

To confirm predictions for the dynamic performance of the damped mirror,
dynamic impact testing was carried out on the final delivered configuration.
An impact hammer was used to excite the mirror locally, simulating the
impulsive loading to be expected in service. Damping was determined using a
conventional curve fitting algorithm employed by the HP 5423A FFT structural
dynamic analyzer. Figure 7 illustrates a typical frequency response function,
the calculated damping, and an actual response time history before and after
application of the damping treatment. The response curve cannot be assumed to
estimate the actual transient response of the mirror' because all modes are not
excited to the correct level. But the damped response curve does illustrate
that an initial impulsive response is damped to the noise level in about 10-15
ms., within the allocated time span.

An additional comparison between tested and predicted performance is
shown in Figure 8. Here the overall modal damping is plotted as a function of
frequency for different modes; both test data and analytical predictions are
shown. Figure 8 shows that more modes were detected from test than were
predicted over the same frequency range, an effect that was probably due to
the limited finite element model density. For those modes that were
predicted, however, the correlation between test results and predictions is
quite good. Certainly the predictions were better than would be necessary to

Justify using the relatively simple and cost-effective analytical design
techniques employed to design such a complex optical structure; their
continued use is recommended to the community.

I,.
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CONCLUSIONS

The following conclusions summarize the significant results of the
damped optics program:

1. Optics subjected to dynamic pressure load require very high damping
to meet optical distortion criteria.

2. Complete VEM coverage of the mirror surface is not necessary if
resonant frequencies are sufficiently high.

3. The Modal Strain Energy (MSE) analysis method can be an accurate
and cost-effective design tool.

4. Test results correlate well with analytical predictions.

5. State-of-the-art damping can be successfully applied to modern high
precision optics through careful design practice as outlined herein.
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METAL DAMPER ANALYSIS AND TEST

Charles W. White
Martin Marietta Denver Aerospace

Denver, Colorado

ABSTRACT

A series-type viscoelastic damper was used as the damping treatment on
the PACOSS Twin Towers experiment. This damper unit was connected to the
towers in series with Ploxiglas tubes. Although the results of the twin tower
tests showed this Plexiglas unit added significant damping, it was learned by
analysis that installation of the unit in series with aluminum tubes would
about double the observed tower damping. In addition, the metal damper unit
has the potential of being space qualifiable. Therefore, a metal damper unit
han been built and tested as a component to verify the analytical prediction
of increased damping. The purpose of this paper is to present the results of
the tests that were conducted and to evaluate the ability to predict future
damper designs.

S

The paper describes the metal damper unit and the testing that was
done. Test results are present in tabular and graphical form. An analytical
model of the damper unit is described and used to calculate the shear modulus
and loss factor of the viscoelastic material used in the unit. A comparison
of these results with those obtained by other investigators show general good
agreement. It was concluded that the general scatter in viscoelastic material
characteristic descriptions, although adequate for preliminary design,
warrants testing of specific damping treatments at the component level to
evaluate the final design.
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I1ITRODUCTION

The primary purpose of this paper is to present the results of
hysteresis testing conducted to determine the damping characteristics of the
series-type viscoelastic damper shown in Figure 1. The secondary purpose is
to evaluate the ability to predict damper stiffness and loss factor using an
analytical model and generic viscoolastic material characteristics. Figures 2and 3, respectively, show a partially assembled view and a disassembled view

of Figure 1 to facilitate the following description of how the damper works.

Part A is an alum bylnd avin g female threads at both ends which
mate with parts D and E. Part D aeals cylinder A at one end. Parts BI and B2
are two halves of another cylinder. B1 and B2 are fastened to the outer
surface of two rings of viscoelastic material (VE ) by adhesive. The inner
surface of the VEX rings is fastened by adhesive to part C. Each VEX r in
w.h-inch wide and .1875-inch thick. The damper unit is asismbld by sliding
the cylinder, B, formed by B1 and B2, into cylinder A. Then part E id mated
with part A to complete the assembly. The outer diameter of B mate with a
snug sliding fit to the inside diameter of A. The length of B is ouch that
one end butte against part D and the other against ph u . Thus, parts A, B,
D and E virtually form a single part attached to the outer surface of the VErings, while part C is attached to the inner surface of the VEX rings. Parts

C and D provide interfaces for connecting the damper unit to the structure in
which it will operate. This damper design wa b inspired by the succes of the
PACOSS Twin Tower dampers. It in superior to the PACOSS Twin Towers damper in
three ways: ) The metal construction of all but the VEM part drives most
(85% to 98%) of the operating strain onerey into the VE material, thus
increasing the damper unit loss factor; 2) The metal housing (part A) provides
the potential for space qualifiGation by adding a bellows connecting parts C
and E and plugging the D end of tube C to eliminate outgasing of the unit;
and ) The bellows connecting parts and E could be designed to provide
whatever stiffneses t required for dimensional stability.

.. - The bellows modification has not boon completed yet. This paper
addresses only the measurement oC damping to demonstrate the improvement of

_j performance (item 1 above). The contents of this paper are organized in the
ii following manner: The hysteresis test data and the method of data reduction

are presented first. Next, an analytical model to predict damper behavior
using known VEX material properties is developed. Finally, the comparison of
test and analysis is discussed, using the analytical model to back out VEM
material properties to compare with the "known" values.
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HYSTERESIS TEST RESULTS

To perform the tests the toot article was fastened into a materials
testing machine, and a chamber to control temperature was placed around the
test article. Temperature was observed on a strip recorder and a digital
metor. Testing began only after the desired temperature was stabilized. Each
hysteresis test was conducted by setting the desired frequency and maximum
stroke amplitude on the materials testing machine and plotting the resulting
force versus displacement. Figure 4 represents a typical hysteresis plot.

The information contained in a hysteresis plot is easily identified by
a discussion of the elementary diagram of the rotating force vectors that
describe the force balance in a sinusoidally excited single- degree-of-freedom
systom. Figure 5 shows such a diagram. (The mathematics leading up to the
diagram are detailed in many elementary vibration textbooks*.) At a constant
excitation frequency the diagram in Figure 5 rotates at w radians per second
with a constant phase angle, 0, between applied force, F, And displacement.
Xo . The values of F and X recorded by the hysteresis plot of Figure 4 are

F -F snwt (1)

and

X - Xo sin (wt -O) (2)

Therefore, when wt 0

F - FO sin 0 CwXO  (3)

and

x = o (4)

Thus, in Figure 4, the force, F - CX o at X 0, is highlighted as of
special interest. Furthermore, it is clear from Figure 5 that

Fo cos 0 - KXo - Mo2X (5)

At the low frequencies of these hysteresis tests MW2 Xo is negligible, so
Eq. (5) gives

K = Fo cos O/Xo  (6)

By reading the peak force, Fo, (when wt = 0) and maximum displacement, Xo,
(when wt - 6 0 0) as indicated on Figure 4, one can determine 0 from Eq. (3)
and then K from Eq. (6). Finally, using the definition that the component
loss factor, n, is the ratio of the energy loss over the energy stored, the
equivalent ratio can be obtained from Figure 5 as

n = Cwxo/[KXo - Mw2Xo] =  tan 0 (7)

*Thomson, W. T., "Mechanical Vibrations," Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1956, p. 52.
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Figure 4 Viacoelastic Damping Hystercais Loop
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Table 1 tabulates the measured values of CwXo, Fo and Xo and
corresponaing calculated values of 0, q and K for each of 24 tets. They have
been categorized into six cases, A through F. Each case is for a particular
temperature and maximum die lacemont of the unit. Tests wore conducted at
four different frequencies (0.5 Hz, 1.0 Htz, 1.4 Htz and 2.0 H1z) for each case.

The calculated values of K and n shown in Table 1 are plotted an a
function of frequency in Figure 6. Two anomalies are evident in Figure 6:
1) The lose factor calculated for the 50*F test at 0.0005-inch displacement
(case A) does not follow the trend of the other 50*? results. The reason for
thia anomaly is the scale used to plot the test force was too small to allow
an accurate reading, e.g., a 0.25-mm reading error, decreasing damping force
and increasing maximum force, would make the 2-liz data of case A have the same
trend as cases B and C; and 2) The loss factors calculated for 50*F data
decreases with increasing frequency. The reason for this trend has not been
found. However, the loss factor of the VEH does display this trend at lowertemperatures an will be discussed in the Theoretical Experimental Correlation

section of this paper.

The following section describes the analytical model generated to
predict the damper characteristics.

ANALYTICAL MODELS

The analytical model of the metal damper was a simple lumped model
based on the assumption of constant strain between displacement coordinates.

The damper unit weighs approximately 25 lbs so the maximum inertiaforce, Mw2 , is loss than 10 1/4 lhs par inch of test deflection. (Because
one end is fixed, the actual force is half of this value.) The lowest damper

spring rates, as will be shown, is about 2,000 lbs per inch of test
deflection. Therefore, the analytical model described below consists only of
stiffness terms.

Figure 7 is a sketch of a section view of the damper and an idealized
five-element model. The stiffness matrix for this model was generated from
the triple matrix product:

-1 K K

1 -1 1 -1

L 11 1 2 - -1 1

-K 1 1K-1

€. -K1 l+K 2- 2 K 1 _KV -K
1 % 1 +1

L1 -K2 , KK 3 4  3vKi- K3+KC1  -K
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Table 1 Measured Damper Properties

CwXo  Fo  X0 K
DAMPER MAX MAX PHASE DRMPER DAMPER

TEMP('F) FREQ(ifz) FORCE(LBS) FORCE(LBS) DISP(IN.) (DEG) STIFF(LBS/IN.) LOSS FACT

.5 5.75 8.5 .00052 42.57 12,038. .9138
50.2 1.0 7.6 11.2 .000525 44.72 14,616. .9238

(Case A) 1.5 8.75 13.5 .000507 40.40 20,277. .8511
2.0 9.9 14.75 .000484 42.51 22,311. .9115

.5 24.375 36.875 .0024 41.38 11,529. .8809
50.2 1.0 33.75 51.875 .0024 40.59 16,415. .8567

(Case B) 1.5 39.0 61.45 .002375 39.39 19,995. .8213
2.0 41.875 66.a75 .00225 38.77 23,174. .803

.5 54.5 82.0 .005225 41.65 11,782. .8895
50.2 1.0 73.5 112.5 .005175 40.79 16,458. .863

(Case C) 1.5 83.75 133.75 .005025 38.77 20,753. .8031
2.0 87.5 145.0 .00477 37.12 24,240. .7567

.5 6.75 1.55 .0025 35.06 3,847. .7018
76.4 1.0 9.4 15.5 .0025 37.3 4,930. .7627

(Case D) 1.5 11.75 18.5 .002425 39.43 5,893. .8223
2.0 12.625 20.05 .0023 39.03 6,772. .8105

.5 14.5 26.75 .0053 32.82 4,241. .6450
76.4 1.0 20.5 34.0 .00525 35.85 5,403. .7226

(Case E) 1.5 24.38 39.5 .0051 38.1 6,095. .7842
2.0 27.0 42.75 .00485 39.17 6,834. .8146

.5 6.25 11.9 .0052 31.68 1,947. .6172
99.4 1.0 7.75 14.85 .0052 31.46 2,436. .6118

(Case F) 1.5 9.0 17.0 .0050 31.97 2,884. .6240
2.0 9.75 17.9 .0049 33.00 3,064. .64$5

I
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Figure 6 Damper Stiffness and Loe Factor vs. Frequency
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Figure 7 Elemonts of Dumper Modol
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The hysteresis tests wore conducted by grounding one end of the dampor and
displacing the other. Therefore, it is necessary to ground one end of the
model to make it representative of the test. When this is done, the solution
for deflections (negleeting inertia effects) can be written,

F -K 1 -K 1 1F 1I
X 2 -K 1K 1+K2+KV2  -K 2  -KV 0 CIlf f(]S3 [ -1 2 KI2*+ 'l 0 o (9)

The inverse of the flexibility, Ell, provides the expression for the
end-to-end stiffness, KD, of the model. Assuming KVI a KV2 - KV, the
desired stiffness can be written as,

KD- F/Xl - l/El, 1  - IKI (Adjoint(K))1,1

S 2 2 3 - (+) (+v)] 2 2 (10)

K (z +  + KV) (K +KV)(K ( +) - K2 (K+KV) - "(K2+ ))

or, after some algebraic rearrangement,

K2
1 ' 1

KD K1  K 1  i(

K + - +-
1 KV KV
1+- 1+

Kn3 K

2K 1 KI
and im K + 2KV (12)

K2 K3~

The values of K1, K2, and K3 are given in Figure 7. Values of
KV depend on values of GV which must be read from the 3MY-4205
viscoelastic material characteristics plot presented as Figure 8. As Figure 8
shows, both material shear modulus, GV, and loss factor, nV, are functions
of temperature and frequency. To read values of GV and nV at a
particular temperature and frequency, one must construct a horizontal line at
the desired frequency and find the intersect of that line with the desired
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Figuro 8 Comparison of Ilystorois Test Results
With 3MYt-4205 Viscoolastic Characteristics
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temperature. (If the desired temperature line does not appear on the plot, it
must be constructed. This may be done by cross-plotting reduced frequency
against temperature on a linear scale as shown in Figure 8.) At the intersect
of frequency and temperature, construnt a vertical line which intersects the
GV and nV data. Finally, at the intersect of the vertical line and the
VEM data, construct a horizontal line to the GV and/or nV scale. Thus, it
can be coon that values of GV range from 40 psi to 400 psi in the
temperature and frequency of intersect. Therefore, the highest value of KVis 400(28.27) - 1.1308(1O)4. So, KV/K2 <_0.295, and KV/K3 _
0.00372. Consequently,

1 1
+- 1.968 (13)

r+ 17h2

and

K 1.968 lV(4KD K 1 + 1.968(14

That is, Eq. (12) appears to provide a good model for preliminary design
calculation. Because the lumped model from which Eq. (12) was derived
prohibits local distortion due to the split in Part B and doo: iot Wl.ow
variations in stress through the VEM due to local loading of the aluminum, the
lumped model predictions were compared with those of a more detailed finite
element model (FEM). This comparison confirmed the adequacy of the simple

lumped model.

However, when using Figure 8, the difficulty of accurate construction
and the scatter of data in the range of interest result in a broad range of
possible values of GV (easily 10% to 20% variation) to use in either Eq.
(11) or Eq. (12) for prediction of damper stiffness. Therefore, an
alternative method of using the analytical model to compare the damper
hysteresis test results with the 3Wf-4205 data (also test results) was uVed.
This is discussed in the following section.

THEORETICAL/EXPERIMENTAL CORRELATION

Because of the difficulties of selecting single values of GV and fV
from Figure 8 which allow a fair evaluation of the ability to predict damper
characteristics, it was decided to back out values of Gv and fV from the
hysteresis test results for direct comparison with test data presented in
Figure 8.

Equation (10) is used to determine an expression for GV from the
model. After some algebraic manipulation it can be arranged in the form,

3 /-1 K\K~K D + 3 ))V I2Ky

1%4 2 3) K K2 K K K % 3 
o (15)
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This quadratic equation is solved for KV, then GV is obtained from

Kv K Gv Av/t (16)

whore the value of AV/t for a single VEM ring is given in Figure 8.

Table 2 presents the calculated values of GV for all hysteresis teat

results contained in Table 1. Table 2 also presents values of nV calculated
from the relationship

nd " AL (SEAL/SED) + nV(SEV/SED) (17)

whore

nd  the measured damper loaa factor

nAL - loss factor of aluminum (0.005)

n - VEM loss factor to be calculated

SEV,SEAL,SED a strain energy of VEM, aluminum and total
damper, respectively.

The strain energy terms were calculated using the element values
defined in Figure 7 and the KV values calculated using Eq. (13) to form the
terms of the 4x4 stiffness matrix defined in Eq. (9). From these stiffness
tenms the first column of the adjoint matrix (corresponding to applied force
Fl) was calculated. That is, the first column of Eq. (9) was calculated
from:

I 1 (K1 +K 2+Kq) (K 2+KV)(K3+, (K 3+KI) 2+I

IX) =  X2 ', K1 (K2+KV) (K3 +IX"F F/
x3  K1 K2 (X3+K) F/A
x 5 K K.V(K 2+KV) (1)
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Table 2 3MY-4205 Shear Modulus, OV1 and Loss Factor,
nv, Backed Out of Hysteresis Test Results

TEMP FREq DAMPER DAMPER LOSS VEK SHEAR S.E. VEM LOSS
(F) (Hz) STIFFNESS FACTOR MODULUS RATIO FACTOR

.5 12,038. .9183 232. .92 .99
50.2 1.0 14,616. .9238 287. .90 1.0
(Case A) 1.5 20,277. .8511 417. .86 .98

2.0 22,311. .9165 466. .85 1.08

.5 11,529. .8809 221. .92 .95
50.2 1.0 16,415. .8567 327. .89 .96
(Case B) 1.5 19,995. .8213 410. .86 .94

2.0 23,174. .8030 488. .84 .94

.5 11,782. .8895 227. .92 .96
50.2 1.0 16,458. .8630 328. .89 .96
(Case C) 1.5 20,753. .8031 428. .86 .93

2.0 24,240. .7567 514. .83 .90

.5 3,847. .7018 69.9 .97 .72
76.4 1.0 4,930. .7627 90.3 .96 .78
(Case D) 1.5 5,893. .8223 109. .96 .85

2.0 6,772. .8105 126. .95 .84

.5 4,241. .6450 77.3 .97 .66
76.4 1.0 5,403. .7226 99.3 .96 .74
(Case E) 1.5 6,095. .7842 113. .95 .81

2.0 6,834. .8146 127. .95 .85

.5 1,947. .6172 34.9 .98 .62
99.4 1.0 2,436. .6118 43.8 .98 .62
(Case F) 1.5 2,884. .6240 52.0 .98 .63

2.0 3,06A. .6495 55.4 .97 6k
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These displacements were used to calculate the strain energy in each
of the elements. Equation (8) defines the strain transforantions, SE, with
the fourth degree of freedom grounded, used in these calculations. It each
strain energy term is written:

(SE) i  L ', % ) K, L 1J (x) (FfA)2  (19)

the desired strain energy ratios can be expressed in terms of appropriate
sums of those terms. Note that (Pi/A)2 constant cancels out. Those
ratios also are included in Table 2.

To compare the hysteresis test determined values of GV and nV
with the general 3MY-4205 viscoelastic characteristics, data in Table 2 were
plotted on Figure 8. The hysteresis derived shear modulus and loss factor
data are connected by solid lines to distinguish them from the generic data
scattor.

CONCLJUSIONS

I. Agreement of hysteresis test derived 3MY-4205 viscoelastic
material characteristics with prior test results verifies the results
reported herein.

2. Use of stiff links in series with viscoelastic material producesa damper mechanism whose loss factor is a large fraction of the viscoelastic
material loss factor.

3. Generic viscoelastic material characteristics, in the form shown
in Figure 8, are invaluable for use in preliminary design of a viscoelastic
damping treatment. However, because of the scatter of data and the
difficulty of accurate reading of data from viscoelastic material
characteristics temperature-frequency plots, final prediction of system
level frequency and loss factor should reflect component test results of the
final damping treatment.
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THE EFFECTS OF BOND IMPERFECTIONS ON THE STRENG1i
AND DYNAMIC RESPONSE OF LAMINATED BEAMS

P.G. Reinhall and R.N. Miles
Department of Mechanical Engineering

University of Washington
Seattle, Washington 98195

Abstract

Constrained layer dampers have been applied to a wide variety
of vibrating structures in order to reduce resonant vibration.
Even though substantial vibration reduction is achieved by theapplication of constrained laver dampers, there is oftena

concern that the bonding adhesive will fail and that the
structure will delaminate due to high vibration levels. The
situation is aggravated by the fact that defects or gaps are I
always present in the adhesive layer. These defects lead to
stress concentrations which may enhance the tendency for the
structure to delaminate. While a very large number of
analytical studies have considered the optimum design for
damping performance, very little is known about the durability I
of a given design. The main purpose of this paper is to
present an accurate and practical scheme for predicting the
strength of a constrained Zayer damper.

Approximate solutions based on the Ritz method are bbtained for
the maximum stresses in the adhesive layer of a vibrating
laminated beam. Results are presented for both the damping
performance and the maximum stresses when parts of the adhesive
have been removed to simulate defects in the bond. A
correction to the approximate stresses due to the effect of
stress concentrations around the defects is then determined in
order to facilitate a direct comparison with the measured
strength of the adhesive as determined by a standard shear lap
test. A detailed finite element analysis is carried out to
examine the stress fields of the adhesives in both the
laminated beam and the shear lap test specimen. This analysis
indicates that the approximate method will yield accurate
results.
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1. Introduction

The concept of reducing the amplitude of vibration of a
structure by bonding a stiff thin member to the structure with
soft viscoelastic material has been used in a wide range of
applications during the last decades. Considerable attention
has been given in the recent literature 11-123 to the damping
characteristics of a range of different contrained layer
damping configurations. Traditionally, these configurations
have nearly always been constructed such that damping will
occur mostly through shear strain in the viscoelastic layer.
This will be the case if the two layers, the primary structure
and the constraining layer, do not deflect relative to each
other, therebye preventing any deformation of the adhesive in
the thickness direction. It has been shown by the authors
E133, however, that a design which incorporates the thickness
deformation of the adhesive can be more effective in increasing
the loss factor of a structure. The thickness deformation also
becomes more important as the excitation frequencies are
increased and should therefore also be considered in
configurations designed with only shear In mind.

In this paper we consider how defects in the adhesive layer
affect the performance and the strength of the constrained
layer damping treatment applied to a simply supported beam.
Both shear and thickness deformations of the adhesive are
accounted for. The inclusion of the thickness deformation is
especially important close to the defect since the constraining
layer is not bonded to the primary beam along the defect.
Numerical solutions for the natural frequencies, loss factors,
and forced response are obtained by the use of the Ritz method
for a range of defect sizes located both at the middle and at
the end of the beam. It is assumed that there is perfect
bonding between all layers except along the defect where the
adhesive has been removed. All deformations are assumed to be
small so that nonlinear effects can be neglected. It is also
assumed that the effect of stress concentrations due to defect
geometries on the dynamical response can be neglected. A
finite element analysis of thL adhesive stresses is presented
in support of this assumption.

In contrast to the dynamical response, the strength of the
laminated beam is severely affected by the stress singularities
in the adhesive layer. For a design engineer, it is probably
as important to know that the chosen treatment will remain
bonded to the structure as it is to know that he has chosen the
highest performing damping treatment. While the optimization
of the performance of constrained layer dampers has been given
considerable attention, few analytical studies have considered
the structural strength of these damping treatments. It is

desirable to know how we can relate the traditional adhesiveItesting methods to the case of dynamic delamination of
laminated structures. Most adhesive testing is done statically
(or quasi-statically in the case of fatigue testing) by the use
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of a simple shear lap testing technique. Using the Ritz
solution as the far field solution in conjunction with a finite
element analysis, we compare the dynamically induced stress
singularities in the adhesive layer with the stress field in a
static shear lAp test specimen. Criteria are then developed to
relate shear I&p test data to the case of vibrating laminated
structures.

2. Damping Effectivness

Consider a simple supported beam with a bonded free-free
constraining layer as shown in Figure 1. The equations of
motion and the boundary conditions are obtained by the use of
Hamilton's Principle.

The strain and kinetic energies can be w:ritten, respectively:

'. ¥,.

where

and where the integration is over the beam length 1. The
subscripts correspond to the different layers, 1 being the
primary beam, 2 the adhesive layer, and 3 the constraining
layer. E., I.,, Aland P; are the Young's Modulus, the bending
moment of inertia, the cross-sectional area, and the density of
the i" layer, respectively. w, and w are the transverse
displacements of the primary beam and the constraining layer.
u, and u3 are the longitudinal dls lacesents of the layers. H;is the nominal thickness of the i0 layer. Both the adhesive
shear modulus, G,(x), and E,(x) are !et equal to zero along the
defect. He now proceed by substituting the kinetic and
potential energy expressions into Hamilton's principle and
assuming harmonic time dependence of the form e"ut . w. and w3
are expanded in the eigenfunctions of a simple Euler-Bernoulli
beam and u, and uS are expanded in the eigenfunctions for
longitudinal vibration in a uniform rod. This leads to a
standard eigenvalue problem,

K A MA
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where K and M are the stiffness and mass matrices,
respectively. The evaluation of these matrices is outlined in
[133. The solution of this eigenvalue problem yields the
natural frequencies, w , and the normal modes of the structure
in terms of an expansion of the chosen shape functions. The
coefficients of this expansion make up vector A. The steady
state forced response of the structure subjected to a
sinusoidal point load can now be obtained as a linear
combination of the normal modes (see (143).

The effect of defects in the adhesive on the response is
indicated in Figure 2. The magnitude of response to a I lbf
point load at the center of the beam is here shown as a
function of excitation frequency close to the first mode of the
structure. In this case, we see a decrease of the damping and
the frequency of the first mode as the defect is introduced in
the adhesive layer. It can also be seen that the damping
performance is sensitive to the location of the defect. The
decrease of the loss factor is more severe if the gap is in the
middle of the beam rather than at the end.

Figure 3 shows the loss factor versus the shear parameterg
LUfLhive defects of various sizes, at the of t e
beam. The parameter g depends on the geometry and the material
properties of the beam.

g = --- -- - - 3

It can be seen in Figure 3 that the loss factor is sensitive to
the size of the defect. The beam, with an optimal choice of
adhesive, experiences a 80% decrease in the loss factor when
the defect length is increased from 1 to 5 inches.

If the defect occurs at the end of the beam, a much smaller
decrease in the loss factor occurs as indicated in Figure 4.
In this case the loss factor is almost independent of the gap
length.

3. Approximate Solutions for Adhesive Stress in a Vibrating
Beam

In order to study the strength of a laminated beam we need to
consider the stress state in the adhesive. The shear stress
and the normal stress in the thickness direction are given by

CC-4
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It should be noted that these equations are not valid in the
region close to a defect due to stress concentrations created
by the chosen defect geometry. He will show in the next
section, however, that these stress concentrations decay
rapidly with distance, making equation (4) valid along most of
the length of the adhesive. The stresses given by this
equation will be referred to in the following as the far field
stresses.

Figures 5 and 6 show the normal and shear stresses close to the
defect as a function of the shear pararazeter g for different
gap sizes when the structure oscillates in its first mode. It
is seen that both stresses are directly proportional to the the
defect length . Hence, the strength of the structure is
significantly decreased by an increase of the defect size.
This is in sharp contrast tQ the static case where the strength
of the adhesive joint has been found to be proportional to the
adhesive thickness, not the defect size E15]. The fat field
stresses in Figures 5 and 6 will be used in the next section in
order to obtain an estimate of the magnitudes of the stress
conctntrations at the end of a defect.

The stresses next to a defect (again ignoring mtress
concentration affects) located at the end of the beam are shown
in Figures 7 and 8. The shear stress is no longer sensitive to
the gap length. The shear and normal stress in the adhesive
layer are plotted in Figures 9 and 10. Both stresses grow
significantly as the defect is approached. It should also be
noted that the far field stresses at the free ends are
significant since the constraining layer is free and the
primary beam is simply supported resulting in a considerable
thickness deformation in the adhesive. Similarly, the stresses
for the case where the defect is at the end of the beam are,
shown in Figures 11 and 12.

4. Predictions of Strength Using Lap Test Results.

To determine the strength of laminated structures adhesive

strength data is needed. The ultimate strength of a specific
adhesive is usually estimated using a static lap Joint test (as
depicted in Figure 13). The lap test creates mainly shear
strain in the adhesive while we know from the above discusslon
that both shear and normal stresses are present in the adhesive
of a vibrating beam. Care must therefore bee taken in applying
the results of a lap test during the determination of the
strength of a vibrating beam. Since the failure of the
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adhesive is due to stress concentrations in both the static lap
test £163 and the vibrating beam, we need to make a detailed
comparison of the stress fields between the two systems. In
this section the stress concentrations are analyzed using a
finite element technique. A scheme is then presented which
enables the use of lap test data in the determination of the
strength of a laminated beam. The method depends only on
estimates of the far field stresses which may easily be
obtained experimentally in the case of the lap test and by the
Ritz method and equation (4) in the case of the beam.

4. Approximate Stresses Neglecting Singularities

If the effects of the stress concentrations are neglected at
the ends of the adhesive it is not diff cult to determine the
normal and shear stresses in both the lap test specimen and the
vibrating bean. In the lap test the ultimate shear stress of
the adhesive is simply taken to be

P

A

where F is the measured applied force and A is the area of the
bonded surface. The stresses away from the discontinuities
(the far field stresses) in the vibrating beam may be predicted
using the Ritz method as described in sections 2 and 3.

4.2 Detailed Stress Fields by Ritz/Finite Element Mlodel

To obtain a detailed description of the stresses near a defect
in the adhesive layer of the laminated beam a hybrid
Ritz/Finite element method was used. The maximum far field
stress state at the end of the defect, over one cycle of
vibration, was determined using the Ritz solution as described
in Section 3. Thi result was then used to obtain boundary
conditions for a static finite element model of the region near
the end of the adhesive. A small region, close to the
discontinuity, can in this manner be analyzed in detail with a
very fine finite element mesh while the overall response is
efficiently accounted for by the Ritz method.

An alternative to this approach would be to model the entire
beam using the finite element method. Unfortunately, in order
to obtain sufficient resolution in the region close to the
singularity it is necessary to have a large number of elements
across the adhesive thickners. Since the aspect ratio of each
element needs to be within acceptable limit;s, the number of
degrees of freedom required to accurately model the complete
structure would become very large. The use of the Ritz method
to account for the global response produces a more eff 'cient
formulation since it allows us to model only a small part of
the adhesive (see Figure 14).
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Results of this analysis, given in Figure 15 show the
normalized shear stress as a function of distance from the edge
of the defect. 'ra is the far field shear stress, i.e. the
shear stress at the end of the mesh as given by the Ritz
method. It can be seen that the shear stress rapidly decays
toward fr as the distance from the defect is increased. In
fact, the stress intensity due to the defect can be seen to be
neglible at a distance equal to one adhesive thickness away
from the defect. The stress intensity factor,/Vr. 1, ranges
from 0.6 to 2.0 for the five cases considered. The normal
stress intensity factors are more severe as shown in Figure 16
where w /@, is plotted versus the distance from the defect.
OM is the normal stess in the thickness direction and o is the
largest principle stress. The magnitude of the normal stress
intensity grows to values significantly larger than the shear
stress intensity factors. It is worth noting that the spatlal
region where the intensified normal stress has any influence is
small due to its fast decay. This supports the assumption that
the increased stress level around the defects does not
influence the glob~l dynamic behavior of the structure.

To obtain a detailed description of the stress field in a lap
joint specimen a finite element model was constructed where two
horizontal surfaces were displaced relative to each other in
the horizontal direction. An adhesive connecting these two
surfaces was modeled using solid elements with a fine mesh.

A comparison between the predicted maximum shear stresses (the
difference between the maximum and the minimum principal
stresses) in the lap test specimen and in the beau are given in
Figure 17. The maximum shear str-s is plotted as a function
of distance from the end of the adhesive. It should be
emphasized that both thickness and shear deformations are
present in the "far field region" of the adhesive layer in the
vibrating laminated beam. As discussed in Section 2, thickness
deformations, and hence, normal stresses are zkore pronounced as
the defect size increases. In the case of the lap jointspecimen, however, the predominant adhesive deformation mode in
the far field is shear.

It would be very helpful if an appkoximate procedure could be
constructed where the true maximum shear stress at the end of
the adhesive in a vibrating beam could be compared to that
obtained in a lap test specimen without reb.rting to a detailed
finite elemen.t analysis as performed here. These two
configruations cannot be directly compared due to the
significant difference in their far field stress state.
However, the configurations may be indirectly compared to each
other by first calculating the maximum far field shear
stresses, T, , from equations (1j) and (5). In the case of theIr shear lap test specimen this maximum shear stress is simply
equal to r given by equation (5). For the beam it is equal to
half the difference between the maximum and the unimua far
field principle stresnes which are easily obtained from
equation (4) and the Ritz method.
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By using this approach the maximum far field shear stress in
the adhesive layer of the laminated beam can be directly
related to the average sheat stress,TAY, which can be measured
during a static shear lap test. The results of our detailed
finite element analysis given in Figure 17 show that
approximately the same maximum stresses for both cases are
obtained if va put Y equal to 1, of the beam due to similar
growth of the shear stresses at the end of the adhesive.
Hence, this approach allows the use of static lap test data in
the prediction of the maximum acceptable excitation levels
during the design of constrained layer damping treatments if rk
is set equal toT,.

Conclusions and Summary

A mathematical model of a laminated beam with defects in the
bonding adhesive has been presented. The model allows for
thickness as well as shear deformation of the adhesive. It was
shown that defects hAve significant effect on the i^= faCtor
of a constrained layer damper. The natural frequecies of the
beam are decreased with introduction of adhesive defects. It
was also shown that the location of a defect along the beam
significantly affects the loss factor . The change of the
dynamical behavior of the beam due to defects has mainly three
implications. First, in the context of constrained layer
damping, it points out the importance of correct and careful
applications of the adhesive and the constraining layer.
Secondly, the location of the treatment on the strucure becomes
critical when the bonding of a constraining layer on the whole
structure Is not possible (due to weight considerations, for
example). This is indicated indirectly in this paper in that
the change of the dynamical behavior is sensitive to the defect
location. The problem of optimal damping placement is an
important one and should be given more attention in future
designs as weight considerations become more important.
Thirdly, the sensitivity of the modal parameters on the
existence of defects in the adhesive could possibly be used in
on-line detection of defects in laminated structures. Research
in this area is underway and will be the subject of a future
paper.

Defects are always present in the adheeive layer of constrained

layer damped structures. The stresses are intensified around
each defect resulting in significantly larger maximum stress
levels than for the case of a continuous adhesive without
defects. In order to obtain an estimate of the stress levels
around the defects a hybrid Ritz/Finite element method waz
employed. It was concluded that the stress intensification
only become significant within a distance from the edge of the
defect approximately equal to the thick-ess of the adhesive
layer. It was also shown that these stress singularities are
very similar in intensity and spatial variation to the
singularities occuring at both ends of the adhesive in a simple
shear lap test specimen. This will potentially enable us to
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use the already existing adhesive data, which have been
obtained by static shear lap testing, In the design of
laminated structures undergoing vibratory notion.
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Figure 3 EFFECT OF GAP SIZE ON LOSS FACTOR
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Figure 4 EFFECT OF GAP SIZE ON LOSS FACTOR
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METHOD OF PREDICTING THE DAMPING

IN STIFFENED STRUCTURES

J. SOOVERE
LOCKHEED-CALIFORNIA COMPANY

BURBANK, CALIFORNIA

ABSTRACT

The viscous damping ratio, in the fundamental mode of stiffened panel type air-
craft structures, has been assumed to vary inversely with the resonant frequency,
when plotted on a log-log graph. It is shown, in this paper, that the funda-
mental mode viscous damping ratio is in fact a constant, independent of the
structural resonant frequency, for a given panel design. A method for predicting
the damping in stiffened panels has been developed which exhibits good correla-
tion with test data. A new analytical model, representing the contribution to
the damping from friction at the fastener lines, is included in the above method.
It is also shown that the dominant contribution to the stiffened panel damping
is, generally, due to acoustic radiation.
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INTRODUCTION

The currently used representation1 2' 3 of the fundamental mode damping, for a
variety of stiffened panel type aircraft structures, is illustrated in Figure 1.
Most of these damping data ha- i been measured[ during sonic fatigue testing of
representative multi-bay panels where the emphasis has been placed ;: --asuring
the response in the fundamental mode. pinant fundamental mode r, %ponse is
usually assumed in sonic fatigue analysis3 ' . The damping curves, it 'sure I,
were obtainedl by forcing the assumed inverse resonant frequency curvr "4t the
measured damping data, Figure 2, when plotted on a log-log graph. 11%' on
of the viscou5 damping ratio with resonant frequency, was derived Er c -4e
degree-of-freedom system response theory, in which the resonant vib It . Ampli-
tude was kept constant.

When Hay first presented the damping dataI at an AGARD Conference in Toulouse,
France, in 1972, he mentioned that there was no real justification for assuming
the inverse frequeAcy type of variation for the damping. tie indicated that there
was an equal justification for drawing a horizontal line through the measured
data points such as illustrated in Figure 2. This comment was considered humor-
ous at the time. However, the results in this paper indicate that it was, actu-
ally, a very valid comment.

The accepted mechanisms 5 , contributing to the damping of stiffened panels,
include aror! rrtlVi, ,, friction damping and gas pumping at the fastener
lines, uateri.,l damping, and energy loss to the surrounding structure. The
friction damping has been assumed to be the dominant damping mechanisms, but
attempts at modelling this dampin6  analytically have failed to produce the
expected correlation with test data . The acoustic radiation has been ssumed,
on the other hand, to piovide only a small contribution to the damping' The
material damping is small for most aerospace structural materials. The gas
pumping at the fastener lines provides a contribution to the panel damping only
in the higher order panel modes 8 . This contribution can, however, be minimized
through the use of jointing compound. The energy loss to the surrounding struc-
ture is, I wever, very difficult to establish, both experimentally and
analytically .

TEST PROGRAH

The acoustic radiation damping is proportional to the panel area 7 110 , while the
friction damping at the fastener line is proportional to the panel periphery.
Large honeycomb panels were selected for the test program in an attempt to iso-
late the contributions from the above two mechanisms by taking advantage of their
different natures. The large honeycomb panels were made from graphite/epoxy and
Kevlar to study, at the same time, the behavior of composite materials" 1 . The
graphite/epoxy composite was known to have a very low material damping12 , 13

whereas Kevlar has significant material damping, Figure 3.

Host of the composite honeycomb panels were tested in the free-free mode, prior
to installation in the test frames, to obtain an estimate of the material damp-
ing. The free-free honeycomb panels were suspended by two strings, positioned at
the nodal lines, and excited by a concentric coil and magnet driver having a very
low damping. Some free-free beams were also tested using a plate attachment to a
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FIGURE 2. EASURED DAMPING IN FLAT SKRINGER PANELS

small electrodynamic shaker to excite the beams through the air coupling between
the beam and the plate. The response was measured by a non-contacting optical
vibration transducerl3 . The free-free edge conditions minimize the contribution
from air damping (acoustic radiation). The viscous damping ratio measured on the
free-free graphite/epoxy beams and in many of the free-free graphite/epoxy
honeycomb panel modes were below 0.001, a value that can be ignored in subsequent
stiffened panel damping predictions, in air. As previously stated, the material
damping values, Figure 3, were significant for the Kevlar panels and beams and
should be included in the analysis. The free-free beam tests were conducted to
determine the influence of the Kevlar cloth on the material damping. No such
influence was found. The material damping was mainly a function of the resin
damping and the fiber orientation.

Thereafter, the composite honeycomb panels were installed in the aluminum test
frame with countersunk fasteners. Jointing compound was applied to the frame and
panel interface to minimize the effect from gas pumping on the panel damping.
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The stiffened honeycomb panels were mounted, in turn, horizontally on four wish-
bone springs, Figsrre 4, for modal studies. The wishbone springs were designed to
simulate the st3£fness of the two wire panel suspensions to be used later iii the
large baffle t st facility. The damping data measured in the modal study tests
are illustrated in Figure 5. The measured damping values, at the lower resonant
frequencies in Figure 5, indicate that the contribution to the panel damping from
fastener line friction must be less than a viscous damping ratio of, approxima-
tely 0003, since acoustic radiation damping is also present in these data. The
effect of acoustik rLa on re,, ba ieetit otore clearly at the higher mode fre-
quencies, where edge radiation effects start to dominate.

The composite honeycomb panels were then mounted, one-at-a-time, in the large
baffle test facility, illustrated in Figure 6. The test facility was -itself
located in an anechoic room. The baffle extended from the floor to the ceiling
and over one fundamental mode wavelength beyond the panel in the lengthwise

It

FIGURE 4. MODAL STUDY TEST FACILITY
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direction. The frame-mounted test panels were supported vertically in the test
aperture by two wires to minimize the energy loss to the surrounding structure.
The honeycomb panel acoustic, but not the structural edge conditions, were
changed in going to this test facility from the modal study facility. The vis-
cous damping ratios, measured in the large baffle test facility, are illustratedin Figure 7. Cate was taken to minimize the error from all sources, including
those introduced by the data analysis techniques. As a consequence, good modal
grouping was obtained in the measured damping data. 'iese damping data were also
repeatable within a pl.'- or minus ten percent error after dismantling and reas-
sembling the test set-up, a year later. These data indicate that the damping, in
large stiffened honeycomb panels, is due predominantly to acoustic radiation.
The highest damping is measured in the fundamental mode, as predicted by acoustic
radiation theory7 . This result has also been observed in integrally stiffened
graphite/epoxy panelsl4, 15 , where the damping is entirely due to acoustic radia-
tion, except for the very small contribution from the material damping.
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FIGURE 5. COMPOSITE HONEYCOMB PANEL DAMPING MEASURED DURING MODAL STUDIES
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(a) Front View

(b) Rear View

FIGURE 6. LARGE BAFFLE TEST FACILITY
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FIGURE 7. COMPOSITE HONEYCOMB PANEL DAMPING MEASURED
IN A LARGE BAFFLE TEST FACILITY

DISCUSSION OF THE DAMPING DATA

The fundamental mode damping data, for the composite honeycomb panels, have been
plotted in Figure 8, together with similar data measured two decades ago on
comparable size aluminum honeycomb panels 16 . A horizontal line can be drawn
through all of these data points. The experimental test set-up was totally
different in the two tests, but the results are very consistent, including the
scatter in the data. Also damping data for the 3,1 composite honeycomb panel
mode are included in the above figure. The damping in this mode is different for
the two types of graphite/epoxy honeycomb panels fabricated with either ultra-
high modulus or intermediate modulus graphite/epoxy face sheets. This result
indicates that the viscous damping ratio in the higher panel modes may be depend-
ent on the stiffness characteristics of the panels.

The same constant fundamental mode damping behavior is obtained for other typesof stiffened panels, based on individual panel damping data available i the

literature. These damping data are summarized in Figure 9 for riveted " °  and
bonded 1 7 aluminum skin-stringer panels, in Figure 10 for aluminum box struc-
tures 18'1 9 and multi-bay panels18 and in Figure 11 for corrugated, hat-stiffened
and built-up integrally stiffened panels 20 . The metallic material, used in the
construction of the multi-bay stiffened panels2 1 , does not make a difference to
the measured damping, Figure 12. The horizontal line drawn through the damping
data in Figures 9, 10, and 12, corresponds to a constant viscous damping ratio of
0.015. The average viscous damping ratio for the fundamental mode of stiffened
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curved panels is also constant with resonant frequency and equal to 0.015, the

same as obtained for the stiffened .; panels. Tlie curved panel resonant fre-
quencies are higher than those of the flat panels on account of the stiffening
effect from curvature. The av -age viscous damping ratio of 0.012, for the
bonded panels in Figure 9, is slightly lower than the corresponding value for the
riveted panels, indicating a relatively small contribution of 0.003 to the panel
viscous damping ratio from fastener line friction. Bonding, while eliminating
the contribution from friction to the panel damping, does not, itself, provide
any damping to the panel.

Unfortunately, there are no damping data reported in the literature for the
higher modes of the above stiffened panels, except for the data presented in this
paper on the stiffened composite honeycomb panels. The variation of the higher
mode damping with resonant frequency is illustrated in Figure 13 for only six of
these composite honeycomb panels for purposes of clarity. The average damping
trend lines do seem to vary almost inversely with the resonant frequency. How-
ever, there is a different trend line for each composite honeycomb panel design.
Thus, the trend lines are a function of the panel stiffness, the material damping
and the panel geometry. Consequently, it is necessary to develop an analytical
model for the modal damping, which includes the above parameters, if sense is to
be made of all the modal damping data. This analytical model must also include
the contribution from friction damping at the fastener lines.
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FASTENER LINE FRICTION DAMPING MODEL

Friction or Coulomb damping is generated by slippage between two contacting
surfaces. The damping force is, generally, assumed to be equal to the product of
the coefficient of sliding friction and the normal force, but independent of the
velocity. In an experiment, described in Reference 22, the equivalent coeffici-
ent of sliding friction was showan to be independent of both frequency and maximum

-: velocity, but dependent on the normal force.

Friction damping, at the fastener lines of stiffened panels, was first investi-
gated many years ago23p24 and continues to be a source of interest in more recent
years 56 . The earlier studies revealed a complicated behavior depending on the
load amplitude at the joint. In a more recent study6 , damping measurements were

made on a wire suspended panel array in near vacuum conditions and on simple
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FIGURE 12. MEASURED STIFFENED ALUMINUM AND TITANIUM PANEL DAMPING
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riveted crossed double cantilever coupons. The coupon data revealed that the
measured friction related joint dissipation coefficient, which is proportional to
the loss factor, was found to be constant with the joint load amplitude.

The test results, in Reference 22, show that the sliding friction coefficient is
independent of frequency and velocity. The test results, in Reference 6, indi-
cate that the loss factor is independent of the load amplitude at the fastener
line, at least for skin-stiffener type panels. It is, therefore, reasonable to
conclude that the friction damping at the fastener line of stiffened panels is
indeed a constant, dependent only on the number of fasteners along the panel
periphery. The viscous damping ratio of 0.0085, measured in a panel array under
near vacuum conditions 6 , is assumed to be representative of the friction damping
in stiffened panels. It is further assumed that the fasteners at the corners of
the panel and at nodal lines that cross the panel, do not contribute anything to
the friction damping. Based on these two assumptions the following approximate
expression is obtained for the equivalent viscous damping ratio, CF' representing
the fastener line friction damping:

01+b) jn

VF r 0.0253 ab ()

where

-,b - the panel length and width in inches

m,n - the mode number in the length and width directions, respectively

s - the number of fasteners per inch.

The damping predicted by equation (1) decreases with increasing mode number.
Also, the half wave length of the higher order panel modes is assumed co be
greater than the fastener spacing which is, typically, around one inch for most

lightweight aerospace structures.

Since the %___ us friction damping ratio is proportional to the number of effec-,.,.Sn e h 4 .
tive fasteners around the panel periphery divided by the panel generalized mass,
the above equation is equally applicable to each active panel in a panel array.
The same viscous friction damping ratio is obtained for a three-by-three panel
array when all of the equal bays are participating in the vibration or if a
larger center bay is vibrating by itself, provided that the active bay dimensions
and fastener spacings are the same. However, the acoustic radiation damping
could differ significantly under the above circumstances, depending on the phase
relationship between the active bays in the array.

ACOUSTIC RADIATION DAMPING

Acoustic radiation from stiffened aircraft panel type structures, has been inves-
tigated for more than two decades and has, consequently, been the subject of very

many papers. The simplest of the theories for predicting the acoustic radiation
damping, is given in Reference 7 for both simply supported and clamped single
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panels when mounted in an infinite baffle. An expression wao developed in this

theory for the generalized acoustic damping coefficient, from the instantaneous
acoustic pressure generated by an elemental piston within the panel. The viscous
acoustic damping ratio, , was obtained by dividing the generalized damping
coefficient by the criticil generalized damping coefficient. The resulting
viscous damping ratio, for double-sided acoustic radiation, is given by

a b a b si(2r)ff b x,,y b sin (2nr r w(x,y) dy dx dy' dx'

-000 0 (2)
cm a b

f f w2(xy) dy dx

where

P - density of air

c - speed of sound in air

X - acoustic wave length

fn - natural frequency of the m,n panel mode

w(x,y) - panel mode shape

M - panel mass per unit area

a - panel length

b = panel width

x,y and x' ,y' - coordinates of two elemental panels in the panel surface

r w {(x -x,) 2 + (y. y,)2} 1/2

On assuming that the acoustic wave length is much greater than panel dimensions7

and, therefore, that

sin (2ar/X) (3)
2nr/k

equation (2) reduces to

(a b2
w (x,y) dy dx

fn fo f 
4a cM a b (4)

f fw2(x,y) dy dxf f
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For a simply supported panel, equation (4) becomes simply

64 Pfna b
Ca A c-Z M 2" 2 )

m.cn

iead7 indicated, through numerical integration of equation (2), that equation (5)
overestimates the acoustic damping ratio of comparatively small panels with
aspect ratios of three or less, by approximately eight percent.

Tha assumption made in equation (3) may not be valid for honeycomb panels be'cause
of their larger size. An improvement in the accuracy can be obtained2  by
expanding the san(2jtr/X)/(2rr/%) term in the numeratnr of equation (2) as a
series and then retaining the first two terms of the series in the inreratio.n.
Equation (2) now becomes

fa(2 fn\2 2 1-a'' f f ,,(,,,y,) X f XI + ,,-,' - Y',
Cn M u I f 6a cb

w(x,y) dx dy dx' dy' } I w 2(x,y) dx dy}

A closed form solution can be obtained for equation (6), which, tor the funda-
mental mode of a simply supported panel, becomes

~a ;4 P M 1 b ( I

where f is the natural frequency of the fundamental made. This equation is the
same as equation (5) for the fundamental mode, except for the added term in the
parentheses.

Equation (7) was used25 to predict the damping in the fundamental mode of the
aluminum honeycomb panels in Reference 16. These panels were m4Iunted in very
stiff test frames. Equivalent simply supported mode shapvs 2 5 *'- 1.ere used in the
above analysis. The damping predicted by equatLon (7), however, overestimated
the measured damping. Reasonable correlation was obtained between the theory
and test data (Figure 14) when the predicted damping values were reduced by a
factor of two. The same factor of two was used in a similar, but more complex,
analysis 5 for predicting the fundamental mode damping uf the composite honeycomb
panels. The test frame torsional and flexural flexibilities were included in
this analysis. The degree of correlation achieved is illustrated in Figure 15.
The average measured material damping values from Figure 3, were added to the
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theoretically predicted values only for the Kevlar panels. The contribution from
friction damping at tOe fastener line was not included in the above analysis.
However, when equation (5) was used to predict the damping of an integrally blade
stiffened graphite/epoxy minisandwich panels, reasonable correlation was achieved
with the measured damping, Figure 16, without having to use any empirical factor.
Clearly, the use of single-sided acoustic radiation, as suggested by Head 7 cannot
be justified for the honeycomb panels because of the test setup used. The reason
for the above discrepancy remains to be discovered. Nevertheless, a theoretical
basis for predicting the damping of stiffened panels has been established.

METHOD FOR PREDICTING STIFFENED PANEL DAMPING
th

The viscous damping ratio, Con for the m,n mode of a single panel is simply

;on " ~a+ 4 F + cml (8)

where the viscous damping ratios for fastener line friction and acoustic radia-
tion are given by equations (1) and (5), respectively, and where C is the
material viscous damping ratio that needs to be established experiments The
expression for the acoustic radiation damping of honeycomb panels (Equations (5)
or (7)) needs to be divided by a factor of 2. Equation (8) can be applied
directly to a single panel vibrating in a panel array. Most of the multi-bay
test panels consist of 9-bays with a large center bay. Thus, the dominant
response tends to occur in the center bay vibrating alone. For a panel array
with equal bays, equation (5) has to be modified to account for the number of
bays vibrdting in-phase and out-of-phase in the panel array. If all of the
adjacent bays are vibeating out-of-phase, then the expression for the acoustic
radiation damping becomes

64 P fn a b 1
r m4 c H m2n2 g W

where R and W are number of axial and lateral bays in the panel array. If, on
the other hand, all of the bays are vibrating in phase, then equation (5) can be
used directly since the viscous damping ratio will be the same for each bay. The
length, a, and width, b, in equations (5) and (9) refer to the corresponding
dimensions of the individual bays.

Equations (1), (8) and (9) were usltio predict the damping in a number of
riveted and bonded multi-bay panels /o, , based on equivalent sinusoidal mode
shapes. The degree of correlation achieved between the measured and predicted
damping is illustrated in Figure 17. The material damping was assumed to be zero
for all of the panels while the friction damping was assumed to be zero for the
bonded panels. Although no damping data were available for the higher panel
modes, the theory was used to predict the fundamental and higher mode damping for
two panel arrays16, with different dimensions, to illustrate (Figure 18) the
behavior of the predicted damping in the higher modes.
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PANEL
NO. TEMPERATURE
01 AMBIENT
01 1230F

.04 02 AMBIENT 0

NUMBERS REFER
2TO MODES

.03
C
I

.02

02 2

93.01 '03
4 03

.01 .02 .03 .04 .05

MEASURED DAMPING RATIO -

FIGURE 16. COMPARISON OF THEORETICALLY PREDICTED AND MEASURED VISCOUS DAMPING
RATIOS OF BLADE STIFFENED MINISANDWICH GRAPHITE/EPOXY PANEL.
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* 9 BAY PANELS RIVETED /
0 12 BAY PANELSJ
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FIGURE 17. COMPARISON OF MEASURED AND PREDICTED DAMPING
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MEASURED PREDICTED LENGTH WIDTH THICKNESS
12 6 0.032

18 6 0.063

ALL DIMENSIONS IN INCHES (1 INCH - 25.4 mm)

NUMBERS IDENTIFY ALL'MODES
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I / " .% 0. 1) (,1
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FIGURE 18. COMPARISON OF MEASURED AND PREDICTED DAMPING OF RIVETED MULTI-BAY

ALUMINUM PANELS WITH PREDICTIONS FOR HIGHER MODE DAMPING.
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The predicted fundamental mode damping was in reasonable agreement with the
measured damping and the horizontal fundamental mode trend line at a viscous
damping ratio of 0.015. The inverse frequency trend line from Figure 2 is also
included for comparison purposes. It has been labelled the all modes trend line

j since it is suspected that some higher mode damping may also be included in
Figure 2.

There is a large amount of damping data available in literature for the funda-
mental mode of stifiened panels but not for the higher panel modes, for the
reasons already discussed in this paper. Scatter is present in the measured
damping data that cannot be explained by theory alone. It is reasonable to
assume that the mechanisms responsible for producing the scatter in the funda-
mental mode damping will produce a comparable change in the higher mode damping.
A great benefit can be gained, if it is possible to predict the damping in the
higher order panel modes from the fundamental mode damping. Sonic fatigue is
moving towards adopting mult'modal analysis, especially for composites. The
approach used is to first subtract out the estimated friction and material
damping from the measured fundamental mode damping, ratio the remaining damping
on the basis of equation (5) and reintroduce the friction and material dampin&.
Thus, the resulting expression for the viscous damping ratio, C., for the m,nC l
mode is simply

11 M F n 2 !

where I is the measured fundamental mode viscous damping ratio and CF1 is the
contribution from rivet line friction damping in the fundamental modl. Thus,
only the frequency and mode number of the higher mode need to be known, in addi-
tion to the fundamental mode data, in order to predict the higher mode damping.

The degree of correlation achieved between the predicted and measured higher mode
data is illustrated in Figure 19 for the stiffened composite honeycomb panels.
No friction damping was assumed in the analysis. Also, a material viscous
damping ratio of 0.008 and zero were used for the Kevlar and graphite/epoxy
panels, respectively. The correlation appears to be reasonable. There is a
suggestion of the presence of some friction damping in the ultra-high modulus
graphite/epoxy panel damping data. The amount of the friction damping is com-
parable to that predicted by equation (1). The presence of friction damping in
the Kevlar panels is probably masked by the value assumed for the material
damping. Some panel mounting problems were encountered with the intermediate
modulus graphite/epoxy honeycomb panels that affected the measured fastener line
dynamic strains and, it is suspected, also reduced the friction damping. This
problem was corrected in the dosi3n of the other composite honeycomb panels. The
reasonable correlation achieved ii. predicting the higher mode damping in the
composite honeycomb panels, tends to validate the use of equations (8) and (10)
for predicting the damping in the higher order modes of other types of stiffened
panels, pending future experimental verification.
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FIGURE 19. HIGHER MODE DAMPING PREDICTED FROM FUNDAMENTAL MODE DAMPING.
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CONCLUSIONS

The fundamental mode viscous damping ratio is constant, independent of the reso-
nant frequency, for a given stiffened panel design. Methods have been developed
that e-,n be used to predict th! damping in stiffened panels with reasonable
contii,.tt'c-. The methods have brv n verified against test data and a variety of
stifien,01 * .tal and cmpoite rinels inrluding honeycomb panels. Additional
cot fir,-, iL,, riqmuire4 for the higher order todes of riveted metal panels.
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ABSTRACT

The modal strain energy method has been sen-i.automated by using a set of
post-processing programs with MSCINASTRAN. These programs extract, tabulate and

reorder modal strain energy data fkom MSCINASTRAN. cigenvalue analysis runs. The

modal strain enerLy data is then interpolated mode by mode to find iterative solutions

for frequency and modulus using viscoclastic material properties data stored in a database.

Damped frequency and structural loss factor for each mode are tabulated and formatted

into loss factor (TABDMPI) and cigenvalue shift factor (DMI) tables for subsequent

MSCINASTRAN dynanic response analysis. An MSC/NASTRAN DMAP alter is

prtscnted which shifts the eigenvalues computed for a fixed viscoelastic modulus to the

damped cigenvalues using the DMI shift factors. Comparison of modal frequency

response analysis to direct frequency response analysis was made for a cantilever beam
example with a constrained layer damper using 3M ISD-112 viscoelastic material.

Frequency response plots agree very well for 00, 500 and 1000 F cases over a frequency

range of 10 to 10,000 Hz including 13 structural modes. The addition of frequency

shift factors to modal frequcncy response improved agreement in resonance frequencies

by a factor of twelve and in resonance amplitudes by a factor of two. The mean

differences in resonance frequencies and amplitudes were 0.5 percent and 10.3 percent,

respectively, over the entire temperature and frequency range.
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Introduction

The finitc clement method provides a powerful evaluation tool for viscoclastic (VE) matcrial damping

designs. The modal strain energy method presented by Johnson and Kicnholz('X2) is an efficient means

of predicting s.iuctural frequency and loss factor. In practicc a series of finitc lement runs must bc made
to investigate the modal frequency and strain energy ratios as a function of VE material modulus. Plotting
modal strain energy ratio vs. VE material modulus shows clearly the range of VE material modulus needed

to obtain cffectivc dahnping. If the strain energy ratio is low or the peak occurs in a range in which no

VE material can be found, then the damping design is modified and the analysis process begins again.

To evaluate the use of a specific VE material using the modal strain energy method requires iteration and

interpolation between the finite element results and the VE material properties. The procedure presented

here improves the basic modal strain energy process by linking the MSC/NASTRAN finite clement results

and a VE materials database using a set of IBM internally developed post-processing programs(s)

The link is divided into three logical programs shown in Fig. I which perform the following functions:

I. DANWED: extracts modal frequency and strain energy data from several MSC/NASTRAN cigenvalue

analysis runs in which VE modulus is varied.

2. DA.MPRO: reorders data extracted from the eigcnvalue runs into a table of frequency and strain

energy ratio vs. VE material modulus and checks for correct tracking of modes.

3. DA.MPIT(a): interpolates frequency and strain energy data, finds iterative solution for frequency using

VE material data, computes modal loss factors.

4. DAMPIT(b): formats appropriate MSC/NASTRAN data tables defining modal loss factors and

cigenvalue frequency shift factors for subsequent dynamic response analysis.

Introduction
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An MSCINASTRAN DMAP altcr is pnmscntcd in Fig. 2 which allows the iterative solution for damped

fr:quencics to be substituted into MSC/NASTRAN for modal fEqucncy or transient response analysis.

With the iterative solutions for modal frequency as wcll as modal loss factor insertcd into MSC/NASTRAN,

a dcfite improvement in response prediction using the strain cnergy method can be epccted.

The goals of the present study were to (1) evaluate the effectivcness of the post.proccssing programs for

a simplc problcm which exhlbits a variety of modcs, (2) determine weaknesses of the implcmcntation to

direct further dcvelopment, and (3) compare results against the direct frequency response mcthod in

MSC/I':AS'RAN over a widc range of temperature and frequency.

Examnplc

A steel cantilever beam 100 by 10 by I mm was used for this study. A dampcr made from 0.5 nun

of 3M.ISD- 112 iscoclastic matcrial and a 0.25 mm, steel constraining layer covered 90 percent of the

bcam as shown in Fig. 3a. An MSCINASTRAN finite clcmcnt model was constructed using two layers

of offset CQUAD4 elements and one layer of CIIEXA -lemcnts(') as shown in Fig. 3b. A grid mcsh

of 3 by I I was used, resulting in 300 degrees ef freedom (base grid points and all Z rotations constrained).

Using a viscoclastic shear modulus of 10 N/mm2 , the computed MSC/INASTRAN cigenvalucs arc:

Introduction
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No. Frequcncy, hi Dscripou

1 81.0 1 bending

2 565.5 2 bending

3 747.4 1 transverse

4 1211.5 1 torsion

5 1402.4 3 bending

6 2598.0 4 bending

7 3618.0 2 torsionltransversc

8 4188.0 5 bending

9 4806.0 2 transversc/torsion

10 6141.0 6 bending

11 6318.0 3 torsion

12 8390.0 7 bending

13 9253.0 4 torsion

This model exhibits a variety of modes and exhibits coupling between torsion and transverse bending

modes due to the asymmetry of the damping treatment. A! modes can therefore be excited by applying

a dynamic force to the cormer of the beam tip shown in Fig. 4. This dynamic force is used to compare

modal (strain energy method) frequency response with direct frequency response analysis (the benchmark).

t
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Discussion

l, ep I - Eigenvalue Analysis

The first step is the modal strain energy procedure (Fig. I) is to make a series or cigenvalue runs in which

the strain cncrr/ in the VE material (ClIEX4A elements) and the total strain encrg is calculated for each

mode. Each nn is made using a different VE material modulus in logarithmic steps through approximately

three orders of magnitude. The modulus range must be selected considcring the intended VE matcra

properties, the structural frequencies and the temperatures of interest:

Ninimum modulus: lowest modulus matcrial at highest temperature and lowcst frcquency

Maximum modulus: highest modulus material at lowest temperature and highcst frequency

Step 2 - Extraction of Data

After each -igcnvalue rmn is made, the modal frequency and strain energy data is extracted by the first

utility program called 'DAMPED." This program extracts data from the output print Wile of MSC/

NASTRAN by scanning for job and run descriptions, cigcnvalues, cigcnvectors and strain energies using

overlaid P.L/I structure variables. FORTRAN programs could also be used t. read "OUTPUT2" files

generated by MSC/NASTRAN.

The data is formatted into a sequential file as shown in Fig. 5. It is important to append to this data the

correct VE material modulus and units that were used for the cigcnvalue run. In order to correctly track

modes in Step 3, it is also neccessary to extract subsets of each cigenvector. The number of displacement

components selected should not be less than the number of modes used for damping analysis and they

should be distributed to differentiate the types of modes present. Twelve components shown in Fig. 6
were selected for the example beam to differentiate higher order bending modes, torsion modes, transverse

modes and shear modes of the constraining laycr.

Discussion
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Step 3 - Reordering of Data

The squcntial data extracted by "DAMPED' fro m , ,vrd NC!NASTRAN cirnvalue runs must be

.cd into tablg !n."m, then reordered by amcndinF V" modulus and by mode type. The initial str.in
cneW table formatted by the s cond utility pfOw,-,tnu Calk4 "AMPRO" is shoWn in Fig. 7. The first

taI. then is to hift the table columns into ai., VI- iwduIus order. This mcans that the order of
cigrnalue runs made and extracted by "DANMI'I 1). is unimportant. If additional runs need be made to

better dcine a F-artiular rq-ion, they can be nui& at awy time, extracted by 'DA MPED* then rcordctcd

by -DAMPRO."

The second and hardest task of rorl ting is to ensur' that each row represents a single mode. This is

har' -,'-, may first appear because different types of modes are affected differently by "E matcrial

mo.ulus. The s in frequency orthitcen modes with modulus is shown in Fig. S. Since MSC/NASTRAN
sorts modes by frequency, it is obvious that some modes shift order betwea VE modulus values of 0.I

and 25X0 N, -- 12- Tirickng modes is further complicated by chwiges in mode shapes across the wi de

variation of VE material modulus. An example is shown in Fig. 9 where the fifth bending mode has

clearly changed at low VE modulus. fly emtining eigcnvectors, one can see that in fact all mode shafts

chanc, even if only subtly, across such a wide r.uige or VE modulus. This fact has implications to

d)namic response prediction accuracy in step 5 as well as to the mode tracking task now at hand.

Two other problems must be addressed by the mode tracking alsriihim. Often new modes involving only

shearing of the constrained layer damper appears at very low VE modulus (we invauon' in Fig. 8).
Because the strain energy ratio approaches unity for these modes, they are probably well damped and thus

unimportant in d)nanic response prcdoction. It is the invasion of the new modes that is problematic

since the important structural modes we desire to track have been shifted upward in sequence and could

be lost from our tracking table.

The second problem involves coupling of modes such as the second torsion and second transverse bending
modes. In the VE modulus range of 0.6 to 1.0 N/mm2, these modes track as shown in Fig. 8 according
to frequency (an additional cigenvaluc run was made at a VE modulus of 0.8 N/mm2 for verification).

The mode shapes shown in Fig. 10 show a dramatic change in this modulus range such that an apparent

cossover in mode shape occurs. The second torsion/second transverse bending mode at high VE modulus
looks like the second transverse bendingisecond torsion mode at low VE modulus. With such large

Discussion
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changes in mode shape, the dynamic response predction for these modes may be inaccurate. Examination
or the strain cnergy ratio vs. modulus for these modes in Fig. 11 shows a dramatic increase toward unity

for both modes, Thus in VE modulus nnqcs where cigenvalucs and mode shapes are rapidly chan g

one must be cautious in accepting dynamic response predictions. This is one arca where the larger expense

of using the direct response method is warranted.

Mode Tracking Algorithm

Considering the above difficultics.. nuncly, (I) changing mode shapes, (2) invasion of damper shear

modes at low VE modulus, and (3) apparent crossover of coupled modes -- the following mode tracking

algorithm has been employed.

First of all, the VE modulus columns of the initial strain encr' table (Fig. 7) arc arranged into ascending

order; i.e., OA2, 0.25, 0.6, 1; 3, 10, 50 and 250. Secondly, each of the tracking cigcnvectors cxtractcd from

MSC/NASTRAN by 'DAMPED' arc normalized to unit length.

The mode tracking algorithm uses dot products of these unit tracking vectors as a measure of how well

a given mode for one VE modulus agrees with a candidate matching mode for another VE modulus. If

the modes arc identical, then the dot product must be unity (by definition of unit length). Considering
that MSCINASTRAN may normalize a given mode with a (4) or (-) sense, we must examinc the absolute

value of the dot products. Thus, two modes which arc indeed different will have an absolute value of

their dot product smaller than 1 (they will not be zero because subsets of orthogonal cigcnvectors do not

retain orthogonality).

The only definitive statement one can and must make is that the highest absolute valued dot product of

one tracking vector with a set of other tracking vectors is the best match of mode shapes. This assumption

is the basis for the mode tracking algorithm.

The algorithm is illustrated in Fig. 12. Because of the likely invasion of damper shear modes at low VE

modulus, the algorithm will always start with the highest VE modulus column and work downwards. The

modes in the next to the highest VE modulus column are first matched to the order of modes in the

highest VE modulus column. Then the modes in the next lower VE modulus column arc matched to

the modes in the next to the highest VE modulus column and so on until the lowest VE modulus column

Discussion
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is reached. The reorderd strain energy table is shown in Fig. 13. Notice that several of the modes have

shifted sequence

Check of Mode Tracking

It is likely that the highest modes will not track as well as lowcr modes because of (1) changing mode

shapes, and (2) invasion of damper shear modes at lower VE modulus. Also in the case of coupled modes

mentioned earlier, the mode shape can change rapidly with VU modulus and may be difficult to track.

One needs to have an indepcndent check of how well the mode tracking algorithm has worked. Figure

14 shows an evaluation of mode tracking using two measurements of proper tracking:

1. frequency ratio - frcqucrcy for mode i at VE modulus j divided by frequency for mode i at VE

modulus j + i.

2. dot product - dot product of tracking vector for mode i at VE modulus j with tracking vector for

mode i at VE modulus j + i.

If the mode has been tracked properly, both frequency ratio and dot product will be nearly unity.
Arbitrary clipping levels can be used to flag modes which arc questionable and to count the lowest

-q number of 'error-free modes' as shown in Fig. 14. Poor tracking can be improved by adding new

cigcnvaluc runs at intermediate VE modulus values, but always is a warning of rapidly changing modes.

Step 4 - Damping Iteration

Ile reformatted strain energy table (Fig. 13) can be readily interpolated to give mode frequency or strain
.* energy ratio for any intermediate value of VE material modulus. No addtional finite element runs need

be made to evaluate the damping of the structure for any temperature and any VE material. This is

accomplished by the utility program called "DAMPIT' shown in Fig. 1 which iterates to a convergent

solution for each mode between the finite element data and VE material property data.

cThe VE material properties database can use any analytical form to describe the VE material modulus
and loss factor as functions of frequency and temperature. In fact, many different forms may co-exist ink .4

V.
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the database depending on the source of the propcrties data. The most general form is a tabulation of

the reduced frequcncy format'X °10) as shown in Fig. 153. It has been found that about seven points arc

Aadequate to define the alpha T (tcmperature shift factor) vs. temperature as well as thc modulus and loss

frequency o sha wnclteo dususdindoa
" factor vs. reduced frequency (alpha T times frequency). all points arc read from the standard reduced

frequency plot as shown in Fig. 15b. 1Third order Lagrangian polynomial interpolation is used in program

'DAMPIT" to interpolate fist logi 0(alpha T) vs. temperature, then logi 0(modulus) and (loss factor) vs.

logl 0 (reduced frequcncy).

WVhcn executing program *DAMPIT," the user is asked to sclct a material numbcr from the database and

sclect a starting temperature for analysis. The iteration strategy shown in Fig. 16 is to reach convergence

to frequency and VE material modulus for each mode, then calculatc structural loss factor. The structural

loss factor for each mode is the product of the strain energy ratio interpolated from the reformatted strain

energy table (Fig. 13) and the material loss factor obtained from the material database.

11W= 1V[ vJ' W C)

where n(') is the structurri loss factor for the rth mode, n, is the material loss factor at the frequency of

the rth mode and temperature selected, and V ') / V() is the ratio of strain energy in the viscoclastic

material to the total strain energy for the rth mode.(0)

After all modes have been processed, the user may select another tei'nperature for analysis or select another

material from the database. All results for a given material are summarized in a table of frequency and

structural loss factor for each mode vs. temperature as shown in Fig. 17. These tables may be the end

result of analysis because damping effectiveness can be evaltated for any material in the database and
across any range of temperature. Frequency and structural loss factor are plotted vs. temperature in Figs.

18 and 19. Of course one must not extrapolate from the tabulated finite element data (Fig. 13) or VE

material data (Fig. 15), so an extrapolation error count is needed to determine the relative validity of the

:4j derived data. Occasionally, a negative value of structural loss factor is computed which is an interpolation

error! INs could occur if a given row of the reformatted strain energy table (Fig. 13) does not represent
." ia single mode or if the mode shape changes drastically such as for the coupled second torsion/scond

tangential modes (see Figs. II and 19).
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Finally, two types of data cards for subsequent MSC/iNASTRAN modal transient or frequency response

analysis re prepared by *DAMPIT." The tabulated damping table "TABDMPI and a direct input matrix

"DMI° which contains frequency shift factors ae both prepared for each VE material and temperature

analyzed. Examples of these data cards are shown in Fig. 20. The frequency shift is actually accomplished

by a threc-statemcnt DMAPI alter in the MSC/NA3TR,AN modal transient or frequency response proce-

dure. Thc MSC/NASTRAN module called *LAMX' shifts each computed modal frequency according to

the following relationship.(0)

fncw = fo (I + shift factor)

Step 5 - Dynamic Analysis

One of the recognizcd dcficicncies of using modal dynamic analysis is that the cigenvalucs and cigenvectors

arc calculated using a stiffiness matrix which is constant with respect to frequcncy.(I) Thus the cigenvalues

and ei6envcctors are correct for at most one mode. Even though the calculated structural loss factors are

input to MSCINASIRAN on "IADDMPI* data cards, the cigenvalues and cigenvcctors are in error.

The greater the difference between the assumed constant VE modulus used for modal analysis with the

actual VE modulus vs. frequency, the greater is the error in cigenvalues and cigenvcctors. One of these

errors can be eliminated by the use of the LAMX module in MSC/NASTRAN as mentioned earlier. By

knowing the exact igenvalucs extracted by MSC/NASTRAN for a fixed "reference' VE modulus, one

can calculate appropriate factors to shift these cigenvalues to the iterative solution for damped frequencies.

When one executes an MSC/NASTRAN modal dynamic analysis run, the cigenvalucs are computed using

the fixed reference VE modulus. But then, MSC/NASTRAN uses the DMAP alter and DM1 factors to

shift thc5c frequencies to match the damped frequencies.

Finally, MSC NASTrRAN computes the modal dynamic response using the shifted eigcnvalues. The only

error left is that the cigcnvectors have been computed for the fixed VE modulus. Thus the reference VE

modulus must still be thoughtfully chosen to most nearly represent the actual range of VE modulus over

frequency and temperature.

In preparing the TABDMPI and DMI tables, careful attention must be paid to the ordering of the modes,

Since a reordering step was necessary to prepare the table used for interpolation (Fig. 13), the order of

Discussion
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modes (in general) no longer matches the original order cxtracted by IMSCINASTRAN (Fig. 7). One
must keep track of this correspondence so that the DMi factors (Fig. 20) apply to the original ordtr of
modes extracted by MSCINASTRAN using a fixed °refcrence V8 modulus. On the other hand, the

tabulation of modal loss factors in the TABDMPI table (Fig. 20) must appear in asnding dampod

frequency ordcr to be interpolated by ISCINASTRAN modal d)n.v ic an:dysis. It is wise to ensure that

the second listing of the cigenvalue table -- the one writtcn by the DvA\P alter following the CIgenvaluc

shift -- matches the frequencies tabulated in the modal damping table TABDMPI (Fig. 20).

T he reference V E m odulus should be chosen considering the tem perature ,rd frequency range of interest

for dynamic analysis. Figure 21 shows the variation of modulus with frequency and temptrature for 3M

ISD-112 V: material. A temperature range 0* to 100* F and a frequency range 10 to 10,000 liz has

been selected to perform modal frequency response. Thus, a median shear modulus of 10 Nimm ,2 was

Modal frequency response analysis was performed using the force and displacement definitions shown in

Fig, 4. The 'AIBDMll) modal loss factor and DMI cigenvalue shift factor tab!.;s produccd by DAMPIT

for 00, 250, 50* (Fig. 20), 750 and 1000 P were inserted into the MSC/N AST*R'AN modal frequency

response deck. Response was computed from 10 to 10,000 hz as shown in Fig. 22. The frequency and

damping shift with temperature can be seen in the second bending mode (450 to 700 liz). TIlus the

computed damped frequencies and loss factors have been properly incorporated into the modal dynamic

response analysis.

Comparison to Direct Frequency Response

Because the variation of VE modulus with frequency is accounted for in the direct frequency response
method in MSC/NASTRAN,(4) it is a benchmark by which the approximate modal strain energy method

can be compared. Furthennore, since the identical finite element model of the damped beam, the same

mathematical description of the VE material from the database and the same finite element program is

used, this comparison is valid. On the other hand, the validity of the finite element model in representing

the actual damped cantilever beam description given in Fig. 3a is not considered and is not related to the

purpose of this paper. The finite element model is a valid mathematical model used only to compare two

analysis techniques.

Discussion 
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For comparison with modal analysis using frequency shifts, MSC/NASTRAN direct frequency response

analysis was performed using only the 0* , 50* and 100 F cases. The real and imaginary parts of" the

shear modulus for 3M ISD-112 VE material were computed from the VE material database and entered

on DMI data cards(') as shown in Fig. 23. Two other response methods were also compared: (1) modal

analysis usig only the calculated loss factor,, and (2) modal analysis using adjusted loss factors sugested

by Johnson and Kienholz(IX2) These four frequency response plots arm compared in Fi.s. 24 to 26 for
* the three temperatures. For each temperature modal analysis with frequency shifts shows excellent

agreement to the direct method. Modal analysis with only calculated loss factors appears somewhat

different due to frequency errors, cspccially for the 0* and 1000 F cases i which the actual VE material

modulus varies significantly from the chosen reference modulus of G - 10 (scc Fig. 21). Modal analysis

with adjusted loss factors differs significantly from the other methods at 0* and 100* F due to loss factor

errors caused by the large adjustments.

To quantify these comparisons, refined frequency response analyses were performed around cach rcsonance

peak. The delta frequency to resonant frequency ratio was chosen small enough to guarantee a peak

amplitude error of less than 0.2 percent. The quantitative comparisons are tabulated in Figs. 27 to 29 for

the three temperatures. These tables can be further -'Dndensed by computing mean values of absolute

errors for each column of frequency and amplitude, the final condensed comparison is shown in Fig. 30

along with a CPU time comparison as well. The following observations can be made:

1. As expected, all modal methods have best agreement at 500 F where the reference VE modulus agrees

most closely with the actual VE modulus.

2. The modal method with calculated loss factors and frequency shifts shows the best agreement with

direct frequency response method.

3. Inclusion of frequency shifts improved agreement of the modal method to the direct method:

b a. 12 times better in frequency

b. 2 times better in amplitude

c. 5 times better in numbe- of peaks (only one resonaince peak missing compared with four extra
and one missing peaks)

Discussion
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4. Thc modal method with adjusted loss factors did not improve apecicnt over the modal method with

only calculated loss factors.

5. The modal mcihod used seven times les CPU time than the direct mcthod.

Discussion
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Conclusiots

The development of a set or utility propns as describred in this paper is not a trivial undertaking.

I lowcvcr, the ben-.fits or haviitg a scmi-automated implemcntation of the modal strain energy mt od are

tremendous. Thc folloaing specific conclusions can be drawn from this work:

1. Post-processing utilities a r valublc to extract, reordcr and tabulate modal strain energy data from

NISC/NASIP.AN.

2. Itcrative technique is success'ul to reach solution between finitc element data and viscoelastic material

properties (both interpolated).

3. Modal frcqucncy response using tabulated cigcnvalue shift factors and modal loss factors agrees very

well with direct frequcncy response using MSCINAs AN.

4. Thc use of cigenvalue shift factors has improved agreement to direct frequency response by a factor

of 12 for frequencies and a factor of 2 for amplitudes of resonant peaks.

5. The modal strain energy method is very cost cffcctive compared to direct response analysis and gives

valuablc intermediate design data not available using the direct method.

Further WJork

iThrcc of the wcaknesses of the semi-automated implementation of the modal strain energy method

described here are mode tracking, selection of the refcrencc viscoelastic modulus and interpolation errors

for strain energy ratio. It is recommcndcd that further work be directed to the following areas:

1. Devclop better ways to track modes across large range of viscoclastic modulus considering.

Conclusions
CE-14



- . .. . l ,- W .Wn - T.W Tr . W w -nrwnn w w - an a i r, ll ;l~ . n nL 4 L nfl a ' ;J .h.. -. , '- .,nsu ,-aia -,.

a. chzning modc shapes

b. invasion of new modes at low viscoclastic modulus

c. apparent crossover of coupled modes

2. Dctcn-inc optimal rcfercncc modulus for a given material and temperature to achieve best agreement

to direct frequency response method.

3. Dctcmidne the most accurate mcthods to use for interpolating tabulated finite element frequencies and

strain energy ratios, considering the rapid changes possible in certain viscoclastic modulus ranges.

Il
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A. BEAM DIMENSIONS (NOTEs ALL DIMENSIONS IN MM)

I CONSTRAINED LAYER DAMPING 02

100

B. FINITE ELEMENT MODEL

CQUAD4. OFFSET 0.12 __0.25 STEEL

0.50 VISCOELASTIC

GRDPITCQUAD4, OFFSET -.50 1.00 STEEL BASE

Figure 3 DAMPED CANTILEVER BEAM EXAMPLE
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1

IBM DAMPING POSTPROCESSOR (PGMzDAMPED, LEVEL 2.0, RELEASED 02/25/86)

NASTRAN JOB IDENTIFICATION --
24 FEB 86 JOB EXECUTION DATE
//BUm1O JOB (F332472,'D=E34.B=026,0=64,A-CH15,L=300'), JOB 2114
TITLE a REFERENCE VISCOELASTIC MODULUS G=10. N/WI 2
SUBTF x CANTILEVER BEAM WITH CONSTRAINED LAYER DAMPING
LABEL : MSC/NASTRAN SOL - 3

DAMPING MATERIAL IDENTIFICATION --

SHEAR (G) MODULUS = 10. NEWTON/MM**2

STRAIN ENERGY TABLE --
MODE NUMBER FREQUENCY(HZ) STRAIN ENERGY STRAIN ENERGY

RATIO (-) MODE TOTAL
1 81.01099 10.06082 2.11486E+05
2 565.4978 24.11002 9.43175E+06
3 747.4214 1.698758 3.74039E+07
4 1211.478 2.447206 6.90292E+07
5 1402.418 15.55614 5.37383E+07
6 2598.088 8.341353 3.63942E+08
7 3617.91 2.827587 3.19740E+08
8 4188.648 4.654436 3.73853E+08
9 4806.43 1.463042 5.06536E+08

10 6141.172 2.671567 1.42389E+09
11 6318.324 2.961023 1.48926E+09
12 8389.977 1.973407 1.45966E+09
13 9253.113 2.982493 2.00080E+09
14 10617.46 18.28062 2.59109E+09
15 10758.3 9.403651 3.20064E+09

AEIGENVECTOR TABLE --
POINT/COMPONENT DEFINITIONS

5 -2 5 -3 9 -3 25 -3 29 -3
33 -2 33 -3 114 -2 114 -3 121 -1
121 -2 121 -3

MODE NUMBER EIGENVECTOR
1 -.060412 202.5733 576.7153 59.16064 383.5242

-.002533 770.4272 -6.742-9 59.99623 -8.49911
4.6980-7 673.7563

2 .6546926 529.197 -74.1774 244.844 429.3921
-.004109 -734.734 2.8437-7 245.1604 10.97636
9.4164-7 -400.966

3 274.8813 75.54501 119.3818 -33.3325 -103.306
1119.52 -126.089 84.73872 -1.772-6 3 1817-7
982.7751 1.5068-7

4 9.973927 -537.458 -930.275 244.163 774.584
157.7955 994.5684 -35.0723 5.4223-8 -2.801-7
29.44481 1.5779-7

5 -1.32108 -376.073 304.3408 -439.529 353.0525
-.383221 -698.505 3.4976-7 -434.592 7.092246
1.8026-6 -144.877

END OF DATA -- EXECUTED 02/27/86

Figure 5 SEQUENTIAL DATA EXTRACTED FROM MSC/NASTRAN BY
PROGRAM "DAMPED"
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IBM DAMPING POSTPROCESSOR 03/15/86 (PGM=DAMPR0, LEVEL 2.0, RELEASED 02/22/86)

INITIAL STRAIN ENERGY TABLE --
DIHFMNSION'S i 20 BY 8
FREQ - FREQUENCY (HZ)
SRAT a STRAIN ENERGY RATIO (%)

SHEAR (G) MODULUS NEVTONlZ***2
HODE 10.00000 1.000000 3.000000 50.00000 250.0000 .3500000 .1199999 .6000000

1 FREQ 81.01099 74.93581 76.94753 88.11200 94.11731 74.10669 73.77985 74.43924
SRAT 10.06082 3.183024 6.655131 9.925859 6.239918 1.294053 .4869074 2.084820

2 FREQ 565.4976 473.2930 501.1592 679.5989 745.7134 462.7322 458.7327 466.8997
SRAT 24.11002 6.588548 14.92709 18.06717 6.151307 2.567349 .9476755 4.212360

3 FREQ 747.4214 732.5198 739.7637 757.9043 768.7947 724.7710 710.9480 728.9683
SRAT 1.698757 1.849461 1.741594 1.780812 1.676847 2.375887 5.699574 1.978114

4 FREQ 1211.478 1195.979 1200.371 1265.132 1450.998 1193.366 1190.426 1194.614
SRAT 2.447206 .4934389 .9168777 9.800516 24.22101 .3774102 .6820608 .4088800

5 FREQ 1402.418 1286.441 1315.845 1672.962 2001.493 1275.982 1271.141 1280.144
SRAT 15.55614 2.404302 6.414805 25.80225 16.16312 .9590149 .5969006 1.511392

6 FREQ 2598.088 2491.371 2517.480 2929.946 3551.776 2478.715 1636.334 2484.846
SRAT 8.341352 1.183848 2.944893 21.83730 21.95978 1.047980 97.33635 .9152036

7 FREQ 3617.910 3496.282 3569.131 3773.671 4250.008 2707.013 1667.188 3294.888
SRAT 2.827586 6.707702 2.115437 8.961308 19.41367 87.09995 99.5Z921 48.52541

8 FREO 4188.645 4084.515 4115.340 4511.426 4911.895 2836.193 1922.995 3694.564
SRAT 4.654435 1.271439 1.749221 15.10740 4.297153 98.46718 94.66066 97.52567

9 FREQ 4806.430 4230.898 4713.805 4841.355 5310.105 3230.562 2464.917 3774.724
SRAT 1.463041 42.50336 6.576258 .7807012 22.40555 98.26783 1.638659 32.86893

10 FREQ 6141.172 4729.316 6071.625 6419.102 7256.445 3617.482 3528.381 4069.917
SRAT 2.671567 95.49686 1.570565 9.623496 19.73346 6.920527 5.029649 1.702738

11 FREQ 6318.320 5420.813 6229.719 6586.309 7404.195 4045.215 3838.236 4215.000
SRAT 2.961022 97.34575 2.188929 8.490968 21.22614 3.093491 22.35677 98.77625

12 FREQ 8389.977 5796.625 7751.602 8619.520 9371.445 4862.230 4045.559 5359.148
SRAT 1.973407 43.54810 79.77216 5.775795 15.39141 44.03835 40.78534 19.10245

13 FREQ 9253.109 5995.941 8266.563 9612.066 10640.90 5181.336 4174.855 5555.477
SRAT 2.982492 5.444666 4.833425 7.470983 18.63564 8.024192 21.11139 53.43187

14 FREQ 10617.46 6249.266 8619.813 10927.70 11507.39 5486.547 5052.758 5959.613
SRAT 18.28061 8.545834 73.30417 3.497725 9.933507 54.95708 2.954040 12.25559

15 FREQ 10758.30 6539.934 9158.344 11709.70 12066.03 6101.418 5224.152 6174.512
SRAT 9.403650 62.71068 7.584310 5.381584 3.165833 18.59659 59.55423 3.695704

Figure 7 INITIAL STRAIN ENERGY TABLE AS READ BY PROGRAM "DAMPRO"
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Step 1: Match modes in VE modulus column Gn-! mode for mode with order
of modes in VE modulus column Gn

Viscoelastic Modulus: Gn-2 Gn-i Gn
1.1 Compute dot product of tracking Mode 1 Al 31 Cl

vector Cl with tracking vectors Mode 2 A2 82 C2
Bl, 82, B3, B4 ... Bm Hode 3 A3 B3 C3

1.2 Switch tracking vector for Gn-1 Made 4 A4 34 C4
which has %hu largest absolute
valued dot product into row I Mode m Am B. Cn
(assume this Is vector B)

Viscoolastic Modulus: Gn-2 Gn-I Gn

1.3 Compute dot product of tracking Hode 1 Al B2 * Cl
vector C2 with remaining tracking Hod. 2 A2 I1 C2
vectors B1, B3, B4 ... Bm Mode 3 A3 B3 C3

I.& Switch tracking vector for Gn- Mode 4 A4 B4 C4
which has the largest absolute
valued dot product into row 2 Hode m Am Bm Cm
(assume this is vector Bl)

Viscoelastic Modulus: Gn-2 Gn-i Gn

1.5 Compute dot product o tracking Hode 1 Al B2 = C1
vector C3 with remaining tracking Mode 2 A2 81 a C2
vectors B3, B4 ... Hm Mode 3 A3 B3 C3

1.6 Switch tracking vector for Gn-I Mode 4 A4 B4 C4
which has the largest absolute
valued dut product into row 3 Mode m Am Bm Cm
(assume this is vector B4)

Viscoelastic Modulus: Gn-2 Gn-i Gn

1.7 Compute dot product of tracking Mode I Al 12 Cl
vector C4 with remLining trate.ing Mode 2 A2 Bl C2
vectors B3 ... Bm Mode 3 A3 B4 C3

1.8 Continue sequence until all modes Mode 4 A4 B3 C4
for VE modulus Gn-l have been
matched row for row with modes Mode n Am Bm Cm
for VE modulus Gn

Step 2: Hatch modes in VE modulus column Gn-2 mode for mode with order
of modes (as reordered) in VE modulus column Gn-I

Viscoelastic Modulus: Gn-2 Gn-1 Gn

2.1 Compute dot product of tracking Mode 1 Al B2 = Cl
vector B2 with tracking vectors Mode 2 A2 BI = C2
Al, A2, A3, A4 ... Am Mode 3 A3 B4 = C3

2.2 Continue sequence until all modes Hode 4 A4 B3 = C4
for VE modulus Gn-2 have been
matched row for row with modes Mode n Am Bm = Cm
for VE modulus Gn-1

Figure 12 MODE TRACKING ALGOR!THM PROCESSING SEQUENCE
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IBM DAHPING POSTPROCESSOR 03/15/86 (PGM=DAPRO, LEVEL 2.0, RELEASED 02/22/86)

REFORHATTED STRAIN ENERGY TABLE --
DIHENSIONS w 20 BY 8 NO. ERROR FREE MODES = 6
FREQ a FREQUENCY (11Z)
SRAT a STRAIN ENERGY RATIO ( )

SHEAR (G) MODULUS NEWON/Mltl*2
MODE .1199999 .3500000 .6000000 1.000000 3.000000 10.00000 50.00000 250.0000

1 FREQ 73.77985 74.10669 74.43924 74.93581 76.94753 81.01099 88.11200 94.11731
SRAT .4869074 1.294053 2.084820 3.183024 6.655131 10.06082 9.925859 6.239918

2 FREQ 458.7327 462.7322 466.8997 473.2930 501.1592 565.4976 679.5989 745.7134
SRAT .9476755 2.567349 4.212360 6.588548 14.92709 24.11002 18.06717 6.151307

3 FREQ 710.9480 724.7710 728.9683 732.5198 739.7637 747.4214 757.9043 768.7947
SRAT 5.699574 2.375887 1.978114 1.849461 1.741594 1.698757 1.780812 1.676847

4 FREQ 1190.426 1193.366 1194.614 1195.979 1200.371 1211.478 1265.132 1450.998
SRAT .6820608 .3774102 .4088800 .4934389 .9168777 2.447206 9.800516 24.22101

5 FREQ 1271.141 1275.982 1280.144 1286.441 1315.845 1402.418 1672.962 2091.493
SRAT .5969006 .9590149 1.511392 2.404302 6.414805 15.55614 25.80225 16.16312

6 FREQ 2464.917 2478.715 2484.846 2491.371 2517.480 2598.088 2929.946 3551.776
SRAT 1.638659 1.047980 .9152036 1.183848 2.944H93 8.341352 21.83730 21.95978

7 FREQ 1636.334 2707.013 3294.888 3496.282 3569.131 3617.910 3773.671 4250.0C8
SRAT 97.33635 87.09995 48.52541 8.707702 2.115437 2.827586 8.961308 19.41367

8 FREQ 3528.381 3617.482 3774.724 4230.898 4713.805 4806.430 4841.355 4911.895
SRAT 5.029649 6.920527 32.86893 42.50336 6.576258 1.463041 .7807012 4.297153

9 FREQ 3838.236 4045.215 4069.917 4084.515 4115.340 4188.645 4511.426 5310.105
SRAT 22.35677 3.093491 1.702738 1.271439 1.749221 4.654435 15.10740 22.40555

10 FREQ 4045.559 $486.547 5959.613 5995.941 6071.625 6141.172 6419.102 7256.445
SRAT 40.78534 54.95708 12.25559 5.444666 1.570565 2.671567 9.623496 19.73346

11 FREQ 5726.645 6102.387 6174.512 6249.266 6229.719 6318.320 6586.309 7404.i95
SRAT 22.76021 5.495537 3.695704 8.545834 2.188929 2.961022 8.490968 21.22614

12 FREQ 6405.063 6101.418 6886.363 8026.793 8266.563 8389.977 8619.520 9371.445
SRAT 58.70917 18.59659 65.55086 34.57300 4.833425 1.973407 5.775795 15.39141

13 FREQ 6430.480 8249.309 8772.133 8957.254 9158.344 9253.109 9612.066 10640.90
SRAT 50.44959 36.12852 12.C2825 5.465423 7.584310 2.982492 7.470983 18.63564

14 FREQ 5646.352 8201.543 9151.281 9797.852 10587.64 10758.30 10927.70 11507.39
SRAT 30.04520 37.69179 24.43390 31.42531 15.46460 9.403650 3.497725 9.933507

15 FREQ 1667.188 2836.193 3694.564 4729.316 7751.602 10617.46 11709.70 12066.03
SRAT 99.52921 98.46718 97.52567 95.49686 79.77216 18.28061 5.381584 3.165833

, Figure 13 REORDERED STRAIN ENERGY TABLE PREPARED BY
PROGRAM "DAMPRO"
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IBM DAMPING POSTPROCESSOR 03/15/86 (PGH=DAMPRO, LEVEL 2.0, RELEASED 02/22/86)

MODE TRACKING SUMMARY TABLE --
DIMENSIONS w 20 BY 8

6 NUMBER OF LOWEST ERROR FREE HODES
28 TOTAL NUMBER OF TRACKING ERRORS
.85 TRACKING DOT PRODUCT CRITERIA
.70 TRACKING FREQUENCY RATIO CRITERIA

DOTP w DOT PRODUCT OF ADJACENT EIGENVECTORS
FRAT = FREQUENCY RATIO OF ADJACENT EIGENVALUES

SHEAR (G) MODUIUS NEWTON/HUU*2
MODE .1199999 .3500000 .6000000 1.000000 3.000000 10.00000 50.00000 250.0000

1 FREQ 73.77985 74.10669 74.43924 74.93581 76.94753 81.01099 88.11200 94.11731
FRAT .99b5896 .9955326 .9933734 .9738559 .9498406 .9194092 .9361933 1.000000
DOTP .9t99986 .9999986 .9999971 .9999570 .9998582 .9997843 .9999446 .9999997

2 FREQ 458.7327 462.7322 466.8997 473.2930 501.1592 565.4976 679.5989 745.7134
FRAT .9913567 .9910741 .9864918 .944396. .8862270 .8321049 .9113406 1.000000
DOTP .9999973 .9999971 .9999934 .9996870 .9994853 .9991254 .9998338 .9999998

3 FREQ 710.9480 724.7710 728.9683 732.5198 739.7637 747.4214 757.9043 768.7947
FRAT .9809278 .9942421 .9951516 .9902r78 .9897544 .9861685 .9858344 1.000000
DOTP .9978669 .9999191 .9999753 .9999554 .9999816 .9997800 .9987368 .,999999

4 FREQ 1190.426 1193.366 1194.614 1195.979 1200.371 1211.478 1265.132 1450.998
FRAT .9975362 .9989554 .9988586 .9963410 .9908319 .9575901 .8719047 1.000000
DOTP .9995483 .9999883 .9999930 .9999794 .9999933 .9999048 .9993286 .9999997

5 FREQ 1271.141 1275.982 1280.144 1286.441 1315.845 1402.418 1672.962 2001.493
FRAT .9962060 .9967489 .9951050 .9776539 .9382687 .8382844 .8358570 1.000000
DOTP .9999652 .9999961 .9999945 .9999135 .9995143 .9978691 .9991608 .9999996

6 FREQ 2464.917 2478.715 2484.846 2491.371 2517.480 2598.088 2929.946 3551.776
FRAT .9944335 .9975325 .9973810 .9896289 .9689741 .8867353 .8249242 1.000000
DOTP .9982092 .9997253 .9999732 .9999428 .9997735 .9980615l .9979444 .9999996

7 PREQ 1636.334 2707.013 3294.888 3496.282 3569.131 3617.910 3773.671 4250.008
FRAT .6044796 .8215796 .9423977 .9795892 .9865173 .9587243 .8879209 1.000000
DOTP .9900776 .9073795 .8472357 .9746227 .9990134 .9996517 .9865994 .9999997

xxxxxxxx XXXXXXXX

8 FREQ 3528.381 3617.482 3774.724 4230.898 4713.805 4806.430 4841.355 4911.895
FRAT .9753693 .9583434 .8921802 8975549 .9807289 .9927859 .9856391 1.000000
DOTP .9851416 .8977492 .8809471 .8613190 .9874995 .9983051 .9706597 .9999998

9 FREQ 3838.236 4045.215 4069.917 4084.515 4115.340-4188.645 4511.426 5310.105
FRAT .9488336 .9939305 .9964260 .9925097 .9824992 .9284525 .8495924 1.000000
DOTP .8444715 .9969354 .9992452 .9995112 .9998357 .9990709 .9984518 .9999996i XXXXXX

10 FREQ 4045.559 5486.547 5959.613 5995.941 6071.625 6141.172 6419.102 7256.445
rRAT .7373597 .9206213 .9939412 .9875348 .9886753 .9567027 .8846068 1.000000
DOTP .8720858 .9013605 .8567947 .9739401 .9990695 .9962218 .9729924 .9999996

Figure 14 MODE TRACKING SUMMARY TABLE
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a Reduced Frequency Plot~'

DAMPING PROPERTIES
Scolchdjnl J0S A~. ~~dsoISt)c20ysxy.I A' J Ik.1

=;: =W 4:?4~ -

LOSS FATO VS. REDUCED rREOUENCY
- . jj 1 ' 1

51C28~~tFA *H'~~t

te w

314 11211 DATA ENTERED 7/01/85 BY NORMAN K~. FRATER
MATERIAL IDENT 311 SCOTCIIDAMP(R) SJ2015X VISCOELASTIC POLYMER TYPE 112
MATERIAL TYPE ACRYLIC
THICKNESS 0.002 INCHES
DENSITY .034.8 LDIIN3
BONDING PRESSURE ONL.Y

- ~MANUFACTURER 3M COMPANY, MINNEAPOLIS, MINN.

DATA SOURCE SCOTCIIDAMP SJ2015X VISCOELASTIC POLYMER: TYPES 110, 112,
& 113 PRODUCT INFORMATION, 3H COMP'ANY

DATA FORMAT MASTER G
DATA UNITS DEGF PSI (POUND/INCI**2)
POISSONS RATIO 0.49
NO.TEIIPERATURE 9
TEMP -25 0 25 50 75 100 125 +

150 175
ALPIIAT 1100. 650. 50. 5.5 1.1 0.23 0.07 +

0.023 0.009S
NO.FREQUENCY 7
FREQ 1.0 10. 400. 2.0E3 6.5E4 1.0E6 1.0E7 +
G 21. 25. 220. 550. 4.0E3 1.3E4 2.5E4 +
ADA 0.44 0.65 1.00 1.06 0.50 0.50 0.30 +
1 ------------------------------------------------------------------

Figure 15 VISCOELASTIC MATERIAL PROPERTIES FOR 3M ISD-112
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DAMPING PROPERTIES.L
ScolchdcmpM SJ2O15X A I. L k A 4
Visco.IlaslkPolymerTyp. 112 41 4?

inLOSS ACTO 'VS* REDUCED FROEN

I6z

MOUC D FEULUS VS RDCE FEUEC

MATERIA TYP ACRYLICRAUR

THICKNESS 0.002EINCHES
N

BONIN PRMDAEURED NLY 5B NRANK FA

DATEAL OURE3 SCOTCDAMP(R SJ2015X VISCOELASTIC POLYMER TYPE10 112,
MAERA 113E PRDUTINOMAOL3MCMPN

DATENSITS .0EG8 PSI (ND/ *2

BNDITE PEEATU RE NL

DATA ~ 15 175ESOCDM J01XVSOLSI OYMR YE 1,12
ALPHA 110 650.UC 50.O 5.5T1.1,0.23C0.07NY

POIS0.023AT0.0095
NO.FEREQUENC 7
GEM -2. 25 220 50. 750 100E 125E +
FREQA 1.0 10. 400. 50 2.5E 1.1E 0.236 0.07 +

ADA ~0.443 0.605 10 .6 08 .0 03
1-----------------------------------

NOFEUEC

FREQ 1.0 10. 400. 2CE-3 65412E .E
It, 1
.it 1 5 20 5 .4,3 .E .E

AD .4 0.5 10 .0 .0 0.0 03
1 - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -
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1 SUMMARY OF RESULTS
EXTRAPOLATION ERROR COUNT m 0
MATERIAL: 3M SCOTCHDAMP(R) SJ2015X VISCOELASTIC POLYMER TYPE 112
G MODULUS NEWTON/MM**2

TEMPERATURE (DEG.F)
0.00 25.00 50.00 75,00 100.00

MODE 1 DAMPED FREQE 85.057 78.892 75.571 74.349 73.924
LOSS FACTORm 0.086028 0.089168 0.044752 0.016406 0.005905
G MODULUS a 25.&386 5.6536 1.5505 0.5314 0.2159

MODE 2 DAMPED FREQ- 697.213 608.634 521.681 485.151 467.473
LOSS FACTOR= 0.092640 0.206621 0.197478 0.108714 0.039911
G MODULUS m 66.3863 18.3555 4.6872 1.7888 0.6354

MODE 3 DAMPED FREQu 760.018 752.090 743.941 737.968 731.466
LOSS FACTOR- 0.010231 0.014849 0.017589 0.018266 0.017556
G MODULUS x 68.7124 20.6118 5.7768 2.2722 0.8556

MODE 4 DAMPED FREQE 1306.542 1233.969 1207.665 1200.363 1196.478
LOSS FACTOR= 0.070602 0.049777 0.019173 0.009674 0.005154
G MODULUS x 84.4936 26.8401 7.6810 2.9962 1.1875

IMODE 5 DAMPED FREQ, 1803.842 1576.739 1384.025 1318.146 1290.091
LOSS FACTORz 0.123134 0.185484 0.139476 0.071335 0.028998
G MODULUS a 94.7903 30.3463 8.3193 3.1597 1.2481

MODE 6 DAMPED FREQE 3211.979 2869.946 2622.897 2536.011 2502.771
LOSS FACTOR- 0.107329 0.144087 0.093152 0.046492 0.019636
G MODULUS a 114.6290 40.3740 12.0528 4.6102 1.8678

MODE 7 DAMPED FREQr 3983.923 3758.535 3637.901 3593.907 3576.307
LOSS FACTOR= 0.058863 0.057541 0.034544 0.017866 -0.018887
G MODULUS w 122.4055 45.6501 14.5216 5.6609 2.2893

MODE 8 DAMPED FREQE 4869.246 4841.711 4823.238 4804.793 4687.285
LOSS FACTORm 0.010031 0.005240 0.005185 0.009211 0.119369
G MODULUS w 129.7791 51.0567 17.0109 6.7163 2.6702

MODE 9 DAMPED FREQn 4913.348 4508.086 4246.262 4148.438 4108.746
LOSS FACTOR= 0.080547 0.098945 0.065689 0.031642 0.015939
G MODULUS = 130.1127 49.4872 15.8424 6.1601 2.4775

MODE 10 DAMPED FREQ= 6877.258 6465.832 6213.406 6121.762 6073.086
LOSS FACTOR= 0.058304 0.064618 0.043004 0.020621 0.016245
G MODULUS = 142.6435 57.7825 19.5636 7.7431 3.0934

MODE 11 DAMPED FREQ= 7034.137 6634.719 6391.898 6292.305 6231.059
LOSS FACTOR= 0.057340 0.057663 0.039540 0.023781 0.022200
G MODULUS = 143.4880 58.4109 19.8689 7.8688 3.1388

MOVE 12 DAMPED FREQ= 9057.117 8694.855 8474.570 8383.684 8293.758
LOSS FACTOR= 0.040969 0.041338 0.025327 0.016544 0.029121
G MODULUS = 152.9413 65.2840 23.1424 9.3051 3.6917

MODE 13 DAMPED FREQ= 10251.441 9745.656 9396.020 9251.742 9182.184
LOSS FACTOR= 0.049950 0.053397 0.035387 0.029462 0.071623
G MODULUS = 157.5495 68.3392 24.4501 9.8537 3.9150

Figure 17 SOLUTION SUMMARY FOR FREQUENCY AND LOSS
FACTOR FROM PROGRAM "DAMPIT"
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LAMA SHIFT DMI DATA CARDS GENERATED 03/15/86 BY PROGRAM "D A h P I T"
$ D A M P I T PROGRAM 2.0 FEBRUARY 1986 (03/15/86)
MATERIAL SELECTED: 3M SCOTCHDAMP(R) SJ2OSX VISCOELASTIC POLYMER TYPE 112

$ REFERENCE G MODULUS SELECTED: 1.OOOOOE+O1 NEVTO./M/M*2
$ TEMPERATURE SELECTED: 5.00000E401 DEG. F

ALTER TO SHIFT EIGENVALUES USING DII TABLE FROMt,P0OGRAM "D A M P I T"
$ INSERT ALTER AFTER NASTRAN "READ ...... 

AND "OFP LAMlA,OEIGS//$"
STATEMENTS IN D!AP PROCEDURE BEING USED.
-----------------------------------------------------------------------

$ ALTER 429 - FOR MSC SOLUTION 30
$ ALTER 830 - FOR MSC SOLUTION 71
$ LAMX ."NAME" ,LAMA/LAMB/O$ MODIFY EIGENVALUE TABLE
$ EQUIV LA.MBLAMA/TRUE$ EQUIY LAMA TABLE TO MODIFIED LAMA TABLE
$ OFP LAMA.OEIGS//; PRINT MODIFIED EIGENVALUE TABLE
$ ENDALTER $
----------- I-------------------------------------------------

$ REFERENCE MSC USERS MANUAL SECTION 5.4 FOR DESCRIPTION OF LAMX DMAP
$ MODULE. 0.41 MATRIX CONTAINS DELTA FACTORS USED IN DHAP ALTER
$ TO CHANGE REFERENCE FREQUENCIES TO CALCULATED DAMPED FREQUENCIES:
$ MODIFIED FREQUENCY z REFERENCE FREQUENCY * (1.0 + DELTA)
$ NAME MODE DELTA
DMI EIG3050 0 2 1 1 3 40
DMI EIG30SO 1 2 -.067151
DMI EIG3050 2 2 -.077483
DMI EIG3050 3 2 -.004656
DI1 EIG30SO 4 2 -.003147
DKI EIG3050 5 2 -.013115
DMI EIG3050 6 2 .0095482
DMI EIG3050 7 2 .0055256
DMI EIG3050 8 2 .0137548
D.I EIG3050 9 2 .0034962
DMI EIG305 10 2 .0117617
DMI EIG30SO 11 2 .0116453
DMI EIG3050 12 2 .0100822
D.I1 EIG3050 13 2 .0154448
DMI EIG30SO 14 2 .0854578
DMI EIG3050 15 2 .0076189
DII EIG3050 16 2 .0588007
DMI EIG3050 17 2 .0376177
DMI EIG3050 18 2 .0233402
DMI EIG3050 19 2 .0760527
DMI EIG30SO 20 2 .064477

$ TABDHP1 DATA CARDS GENERATED 03/15/86 BY PROGRAM "D A H P I T"
$ FREQ ADA FREQ ADA FREQ ADA FREQ ADA
TABDMPI 3050 +3050 1
+3050 1 0.0 0.0 75.57103.0447521521.6812.1974777743.9414.0175893+3050 2
+3050 2 1207.665.019173 1384.025.13947552622.897.093152 3637.901.034544 +3050 3
+3050 3 4246.262.06568854823.238.00518496213.406.043004 6391.898.0395399+3050 4
+3050 4 8474.57 .02532759396.02 .035386910840.27.040186511524.81.0397828+3050 5
+3050 5 12678.04.035406312951.37.016625812979.83-.00410414278.41.0293295+3050 6
+3050 6 16525.21-.03811218177.71.043970533050.41.0439705ENDT
$ FREQ ADA FREQ ADA FREQ ADA FREQ ADA

-----------------------------------------------------------

Figure 20 MSC/NASTRAN DMI EIGENVALUE SHIFT AND TABDMP1
DAMPING TABLES PRODUCED BY PROGRAM "DAMPIT"
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$. .. .2 ------- 3 ------- 4 ------- 5 ------- 6 ------- 7 ------- 8 ------- 9 --------

$ MATERIAL PROPERTIES FOR CONSTRAITED DAMPING MATERIAL
$ REFERENCE MODULUS = 1.0, REFERENCE LOSS FACTOR -- 1.0
$ UNITS = NEWTON/HM1M'2
MATI 2 1.0 0.49 9.633-10 1.0

------- 2 ------- 3 ------- 4 ------- 5 ------- 6 ------- 7 ------- 8 ------- 9 -------
$ 3H TYPE 112 VISCOELASTIC DAMPING MATt;RIAL
$ REAL PART OF COMPLEX MODULUS, TR(F), TEMP = 50.0 DEGREES F.
$ G REF - 1.0000, ETA REF = 1.0000, ETA STRUC = 0.0000

UNITS - NEWTON/Mllv2
$------- 2 ------- 3 ------- 4 ------- 5 ------- 6 ------- 7 ------- 8 ------- 9 ------
TABLEDI 3050

50. 0.187 75. 0.544 100. 0.820 150. 1.293
200. 1.701 300. 2.400 400. 3.009 600. 4.089
800. 5.029 1200. 6.652 1600. 8.054 2400. 10.452
3200. 12.502 4800. 15.964 6400. 18.882 9600. 23.728
12800. 27.695 ENDT

------- 2 ------- 3 ------- 4 ------ 5 ------- 6 ------- 7 ------- 8 ------- 9 -------
$ 3M TYPE 112 VISCOELASTTC DAMPING MATERIAL
$ IMAGINARY PART OF COMPLdX MODULUS, TI(F), TEMP = SO.0 DEGREES F.
$ G REF = 1.0000, ETA REF 1.0000, ETA STRUC = 0.0000
$ UNITS = NEWTON/MM**2
$ 2 .------ 3 3 ------ 4 4 ------ 5 5 ------ 6 6 ------ 7 7 ------- 8------- 9 ------
TABLED1 3051

50. 1.158 75. 1.547 100. 1.858 150. 2.389
200. 2.841 300. 3.602 400. 4.237 600. 5.295
800. 6.186 1200. 7.667 1600. 8.892 240a. 10.892
3200. 12.5k5 4800. 15.103 6400. 17.150 9600. 20.319
12800. 22.692 ENDT

S 2 ------- 3 ------ 4 ------ 5------ 6------ 7------ ------ 9------

Figure 23 COMPLEX MODULUS TABLES USED IN MSC/NASTRAN DIRECT
FREQUENCY RESPONSE ANALYSIS
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Figure 27 Tabulated Frequency Response Methods Comparison at 0 deg. F.

Frequency Response MethodIII. III. IV.

Direct Method Modal With Modal With Modal With
Loss Factors Loss Factors Adjusted Loss
& Freq. Shifts Factors

Mode
Description Direct (REF.) Modal % Diff. Modal %Diff. Modal %Diff.

1 Bending F - 86.23 84.96 -1.5 80.85 -6.2 80.50 -6.6
DISP - 16.46 14.81 -10.0 16.33 -0.8 10.28 -37.5

2 Boding F - 706.8 696.7 -1.4 56!.3 -20.0 563.0 -20.3
DISP - .2417 .2043 -15.5 .3103 +28.4 .1233 -48.9

1 Transverse F - . -- --- 749.5 --- 749.9 ---
Bending DISP - --- --- --- .04727 --- .03940 ---

1 Torsion F - 1311. 1307. -0.3 1210. -7.7 1220. -6.9
DISP - .08478 .08906 +5.0 .1087 +28.2 .04543 -46.4

3 Bending F - 1866. 1830. -1.9 1419. -23.9 ... ...
DISP = .02615 .02599 -0.6 .05052 +93.2

4 Bending F - 3279. 3226. -1.6 2621. -20.0 ... ...
DISP - .007489 .007507 +0.2 .01174 +56.8 ... ...

2 Torsion/2 F - 4011. 3995. -0.4 3627. -9.6 3673. -8.4

Trans Bend DISP = .01104 .01283 +16.2 .01535 +39.0 .00618 -44.0

5 S Bending F a -- - --- 4238. - .... ..
DISP - --- --- --- .00653 ... ......

2 Trans Bend/ F = 4869. 4875. +0.1 4817. -1.0 4825. -0.9
2 Torsion DISP - .01033 .00670 -35.1 .00494 -52.2 .00331 -67.9

6 Bending F - 7049. 7052. 0.0 6338. -10.1 6383. -9.4
DISP = .006082 .006176 +1.5 .007493 +23.2 .002785 -54.2

3 T o r s i o n I ---.... ... .. .... .. .... ..
. DISP --- ---......... . ...

7 Bending F = 9104. 9100. 0.0 8416. -7.6 ... ...

DISP - .001059 .000993 -6.2 .001112 +5.0 ... ...

4 Torsion F w # # --- 9297. --- 9365. ---
DISP = ... .. .. .004307 --- .001582 ---

Note: # Mode is above 10,000 Hz
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Figure 28 Tabulated Frequency Response Methods Comparison at 50 deg. F.

Frequency Response M;thod

II. III. IV.

Direct Method Modal With Modal With Modal With
Loss Factors Loss Factors Adjusted Lo"
& Freq. Shifts Factors

Mode

Description Direct (REF.) Modal % Diff. Modal WDi4f. Modal %Diff.

1 Bending F = 75.75 75.60 -0.2 80.97 +6.9 81.00 +6.8
DISP = 38.96 36.02 -7.5 31.37 -19.5 79.64 +104.4

2 Bending F = 532.3 521.8 -2.0 564.2 +6.0 564.9 +6.1
DISP = .1792 .1718 -4.1 .1461 -18.5 .2125 +18.6

1 Transverse F = 748.6 747.2 -0.2 750.2 +0.2 749.9 +0.2
Bending DISP = .04040 .03532 -12.6 .04038 0.0 .04340 +7.4

1 Torsion F = 1209. 1207. -0.2 1211. +0.2 1211. +0.1
. DISP = .3879 .3850 -0.7 .3818 -1.6. .4338 +11.8

3 Bending F = 1417. 1403. -1.0 1424. +0.5 1424. +0.5
DISP = .04732 .04723 -0.2 .04515 -4.6 .04776 +0.9

4 Bending F = 2653. 2642. -0.4 2618. -1.3 2620. -1.2
DISP = .01322 .01291 -2.3 .01320 -0.1 .01216 -8.0

2 Torsion/2 F = 3648. 3640. -0.2 3621. -0.7 3623. -0.7
Trans Bend DISP = .02785 .02509 -9.9 .02540 -8.8 .02129 -23.5

5 Bending F = 4294. 4294. 0.0 4233. -1.4 4240. -1.2
DISP = .007291 .006967 -4.4 .007263 -0.4 .006383 -12.4

2 Trans Bend/ F = 4834. 4828. -0.1 4811. -0.5 4813. -0.4
2 Torsion DISP = .007107 .007393 +4.0 .007345 +3.3 .006181 -13.0

6 Bending F = ... .. ..
DISP = ... .. -- --. .. . ....

3 Torsion F = 6425. 6407. -0.3 6334. -1.4 6339. -1.3
DISP = .01049 .00998 -4.8 .01022 -2.6 .00765 -27.0

7 Bending F = 6496. 8491. 0.0 8403. -1.1 8416. -0.9
DISP = .001450 .001402 -3.3 .001437 -0.9 .001183 -18.4

4 Torsion F = # # --- 9277. --- 9305. ---

DISP = --- --- --- .005892 --- .003935 ---

Note: I Mode is above 10,000 Ifz
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Figure 29 Tabulated Frequency Response Methods Comparison at 100 dog. F.

F r e q u e n c y Re s p o n s a M e t h o d

Direct Method Modal With Modal With Mtodal With
Loss Factors Loss Factors Adjusted Loss
& Freq. Shifts Factors

Mode
Description Direct (REF.) Modal % Diff. Modal %Diff. Modal %Diff.

1 Bending F = 73.90 73.90 0.0 81.00 +9.6 81.00 +9.6
DISP = 307.2 285.1 -7.2 237.6 -22.6 1614. +425.4

2 Bending F - 467.8 467.6 0.0 S65.4 +20.9 565.5 +?0.9
DISP = 1.089 1.050 -3.6 .7173 -34.1 2.844 +161.1

1 Transverse F = 736.7 735.4 -0.2 751.3 +2.0 748.5 +1.6
Bending DISP = .03368 .02984 -11.4 .03947 +17.2 .06037 +79.2

1 Torsion F = 1197. 1196. -0.1 1212. +1.2 1211. +1.2
DISP = 1.585 1.428 -9.9 1.392 -12,.2 4.035 +154.5

3 Bending F = 1295. 1294. -0.1 1405. +8.5 1403. +8.3
DISP = .1968 .1988 +1.0 .1613 -18.0 .4448 +126.0

4 Bending F = 2505. 2505. 0.0 2599. +3.7 2598. +3.7
DISP = .06161 .06232 +1.1 .05790 -6.0 .1334 +116.5

2 Torsion/2 F = 3574. 3577. +0.1 3618. +1.2 3618. +1.2
Trans Bend DISP = .05865 .04614 -21.3 .05361 -8.6 .1069 +82.2

5 Bending F = 4118. 4114. -0.1 4194. +1.8 4190. +1.7
DISP = .02399 .02263 -5,7 .02200 -8.3 .04276 +78.2

2 Trans Bend/ F = 4814. --- --- ---....

2 Torsion DISP = .003095 --- --- --- --- --- ---

6 Bending F = 6076. 6066. -0.2 6133. +0.9 6135. +0.9
DISP = .01189 .01029 -13.5 .00945 -20.5 .01369 +15.1

3 Torsion F = 6256. 6241. -0.2 6327. +1.1 6321. +1.0
DISP = .02364 .01750 -26.0 .01685 -28.7 .029GJ +22.9

7 Bending F = 8353. 8316. -0.4 8412. 40.7 8398. +0.5
DISP = .002188 .001665 -23.9 .001463 -33.1 .001935 -11.6

4 Torsion F = 9185. 9263. +0.8 9332. +1.6 9291. +1.1
DISP - .01072 .00346 -67.7 .003138 -70.7 .004715 -56.0
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Figure 30 Response Method Summary: Mean Errors and CPU Time

a. Mean Absolute Frequency and Displacement Magnitude Errors
Summarized from Figures 27, 28 and 29.

Frequency Comparison Temperature (Dog. F.) Mean Error
For

Response Method (10-10000 Hz) 0 50 100 0,50,100

I. Direct Freq Error = 0.0 0.0 0.0 0.0
Method Disp Error = 0.0 0.0 0.0 0.0

No. Peaks = 9 11 13 ---
Mismatch # = 0 0 0 0/33

II. Modal Method Freq Error = 0.8 % 0.4 % 0.2 % 0.5 %
With Loss Disp Error = 10.0% 4.9 % 16.0 % 10.3%
Factors and No. Peaks = 9 11 12 ---
Freq. Shifts Mismatch # = 0 0 1 1/33

III. Modal Method Freq Error = 11.8 % 1.8 % 4.4 % 6.0 %
With Loss Disp Error = 36.3 % 5.5 % 23.3 % 21.7 %
Factors No. Peaks = 12 12 12 ---

Mismatch # = 3 1 1 5/33

IV. Modal Method Froq Error = 8.7 % 1.7 % 4.3 % 4.9 %
With Adjusted Disp Error = 49.8 % 22.3 % 110.7 % 60.9 %
Loss Factors No. Peaks = 8 12 12 ---

Mismatch # = 5 1 1 7/33

Note: # number of resonance peaks mismatched (extra or missing)

b. CPU Time Comparison for Modal vs. Direct Frequency Response Methods
(five frequency response plots using 500 frequency increments each)

(1) Modal Strain Energy and Modal Frequency Response Method with Loss
Factors and Frequency Shifts

MSC/NASTRAN Eigenvalue Runs (8 x 52) - - - - 416 sec.
DAMPED, DAMPRO, DAMPIT ----------- 12 sec.

MSC/NASTRAN Modal Freq Response (5 x 28) - - 140 sec.

TOTAL 568 sec. (X)

(2) Direct Frequency Response Method
(2), MS'/NASTRAN Direct F- Response (5 x 803) - 4015 sec.

TOTAL 4015 sec. (7X)
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INFLUENCE OF TEMPBRATURN ON STRUCTURAL JOINTS

WITH DESIGNXD-N DAMPING

Jacky C Prucz-4 West Virginia University

Philip Smith and Lawrence W. Rehfleld
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Lockhed-Gdorgla Company

ABSTRACT

4 An innovative means to enhance the inherent damping in structures is.4 provided by the designed-in incorporation of viucoelastic materials in joints.
The joints, as envisioned, are double-lap sherx joints that dissipate energy
when worked in an axial direction. The damping and stiffness
characteristics of such oints have been evaluated experimentally at various
temperatures and frequencies which are expected to be representative for
large space structures, A new, non-resonant experimental technique has
been utilized for this investigation. It provides the complex stiffness of the
test specimen at extremely iow strain levels and accounts for elastic
deformations in the test set-up by means of carefully measured calibration
factors. The temperature and frequency variations of the overall joint
properties follow, In general, the same trends as the corresponding

properties of the particular viscoelastic material used in the joint. The test
data show that properly selected viscoelastic materials and design
configurations can reduce the dependence of the joint properties on
temperature and frequency variations. Significant damping benefits are
possible without unacceptable stiffness penalties.
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INTRODUCTION

Mission r.quirements for future space structures dictate extremely large
dimensions by today's standards. Several important missions, such as
defense systems, orbiting telescopes or large antennae require very tight
orientation tolerances, short settling times and low vibration levels. The
stringent controllability requirements of large space structures have
spawned intensive research and development efforts in the vibration control
area. They are generally divided in two basic approaches - active modal
control and passive damping enhancement. A balanced approach, that
properly combines active and passive means, is widely accepted today as
the most realistic and practical solution to motion control of large space
structures. High passive damping not only limits vibration amplitudes and
shortens transient decay times, but also has favorable synergistic effects
when it is combined with active controls'.

An innovative means to enhance the inherent damping in structures is
provided by the designed-in incorporation of viscoelastic materials in oints.
It combines the well-known damping capability of viscoelastic materials with
the predominant influence that joints and supports have on the overall
damping of most structures 3 "  As opposed to the commonly used add-on
approach for damping treatments, the designed-in approach provides a
promising opportunity to maximize the damping benefit while minimizing the
associated penalties in other structural properties.

Preliminary theoretical and experimental research for the development of
passively damped joining concepts has been a recent cooperative
undertaking of McDonnell Douglas Astronautics Company and Georgia
Institute of Technology under the sponsorship of the Air Force Office of
Scientific Research. Two now experimental techniques developed during the
initial phase of the program for dynamic characterization of such joints
have been presented at the "Vibration Damping Workshop 1."4  They are
referred to as the "simplified steady state" and the "sine pulse
p:opagation" methods. The first yields the complex stiffness by using a
non-resonant forced vibration approach whereas the second provides the
energy dissipated by damping by using a stress wave propagation
approach. Their application to room temperature testing of passively
damped joint specimens and the corresponding results have been described
in Ref. 5. A detailed description of the test specimens, their doeign
criteria, assumptions and methodologies and their fabrication procodureil
appeara in Ref. 6. Two new analytical models have been developed during
this research program for design analyses of passively damped joints of
double-lap configuration. The first is a fully elastic model presented in
Refs. 4 and 6 whereas the second is a quasei-atatic model that employs the
complex modulus concept to describe the viscoelastic behavior of the
adhesive layers 7. Good correlation has been obtained between the two
models as well as between analytical predictions and experimental results7 .
A detailed presentation of the room temperaturo tentso the analytical
modeling and parametric studies is given in Ref. 8. A complete ovarview of
the entire program, including low and high temperature tests, is reported in
Ref. 9.
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This paper deals only with the low and high temperature tests on
repreantative specimens of passively damped joints. Its objective is to
complete the xeporting of results generated by the research program
mentioned above. It is associated primarily with Ref. 5 since it shows how
some of the room tempereture damping and stiffness properties presented in
that reference may change when measured either at low or high
temperatures. The environmental temperature tests have been conducted on
8 spocinens at temperatures of -50, 25, 75 and 200"F, at four of the test
frequencies investigated in Ref. 5, namely 0.25, 1.0, 25.0 and 100.0 Hz.
Since damping enhancement in large space structures was the primary
motivation of this program, the teats havo bean confined to low strain levels
and frequency and temperature ranges considered to be representative for
such structur6al,5 .
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TEST SPECIMENS

The passively damped joint specimens selected for low and high
temperature teats are listed in Table 1. Six different types of viscoelastic
materials, which are considered to be suitable for space applications, have
been used in theme specimens. Their densityp manufacturer, trade names
and chemical base are given in Table 1.

All the specimens are based upon the symmetric double-lap
configuration of bonded joints in which the conventional elastic adhesive is
replaced by viscoelastic material. The damping enhancement is achieved by
shear deformation of the viscoelastic adhesive layers when the joint
members are loaded in their axial direction (Fig. 1). The use of this joining
concept is based upon the hypothesis that it is possible to obtain a
favorable trade-off when structural stiffness is exchanged for increased
structural damping. The need to accept a stiffness penalty arises from the
requirement to make the joints somewhat flexible so that a reasonable
amount of strain energy is resident in the joints. This strain energy is
then available for dissipation by the viscoelastic material selected expressly
for this purpose.

A slightly different configuration of a double-lap joint has also been
investigated as a possible way to achieve better trade-offs between the
damping benefit and the associated stiffness penalty. It includes a direct
glass-fiber connection between the members of the joint, as shown in Fig. 2.
In addition to higher axial stiffness, this elastic link provides structural
redundancy at elevated temperatures and in the case of viscoelastic
materials with poor creep resistance. Two of the specimens listed in Table
1 include such elastic connection elements. They are specimens 15 and 18
that use the same viscoelastic materials as the regular double-lap specimens
3 and 5, respectively. The analytical models developed for passively
damped joints (Refs, 6 and 7) account for the effect of these elastic links
on the overall properties of the joint.

The dimensions L-hown in Figs. 1 and 2 are typical for all the test
specimens. The only geometric pirameter that varies significantly 2om one
specimen to another is the thickness of the adhesive layers. Its value is
about 0.007 in. for specimens I and 11, about 0.05 in. for specimens 5, 9, 15
and 21, and about 0.125 on0 for specimen 3. The axial stiffness of certain
specimens could have been increased by using thinner adhesive layers when
feasible from the manufacturing standpoint.
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Trable 1. Specimens for EnvironutenfAl Temperature Teats

Specimen 
Viscoelastic Materil

Number Denxity (lb/in3 ) Manufacturer Name Type

1 0.035 3F ISD 110 Acrylic
3 0.046 3M EC 2216 Epoxy
5 0.035 Soundcoat DYAD 606 Polyurethane
9 0.029 G9 SMRD 100F90 Epoxy

11 0.046 GE fry 630 Silicone
15* 0.046 3M EC 2216 Epoxy
18* 0.035 Soundcoat DYAD 606 Polyurethane
21 MDAC Rubber Plastiz

* Includes lasLic Connectio, Elewnt.s
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SUMMARY OF ROOM TEMPERATURE

EXPERIMENTS

Tha damping and stiffnesm characteristics of selected joint specimens
have been measured at room temperature (750F) and 8 different frequencies
- 0.1, 0.25, 0.5, ,, 10, 25, 50 and 100 Hz. Since the primary candidates for
large space structures are repetitive lattice trusses, the main loading
direction considered in the design and testing of these specimners was the
axial one. The main experimental procedures and reults are preserted in
Ref. 5.

Three differont. experimental methods have been used for the room
temperature tests. Two methods are new and have boen developed during
this research program. They are referred to as the simplified steady state
and the sine pulse propagation techniques, r ,apectively. In addition, the
classical hyuteresis-loop approach has been applied on all the specimens in
order to enhance the data base at very low frequencies. New and
innovative data acquisition and reduction procedures, based on advanced
digital instrumentation, have been utilized for all the three testing
techniques. Good correlation has been obtained among the data generated
by different methods in the same testing conditions, as shown in Figs. 3
and 4 which are reproduced here from Ref. 5. A least-square fitting
routine is used in these figures in order to draw the "best fit" line
between the data points generated by the same method.

The frequency effect on room temperature damping and stiffness
characteristics of selected specimens is shown in Figs. 5 and 6,
respectively, which are reproduced from Ref. 5. Again, the continuous lines
represent the "best fit" generated by a least-square routine for all the
data points of the same specimen. The results shown in these figures have
been obtained by the simplified steady state approach. Specimen 14, which
is not listed in Table 1, is a standard double-lap bonded joint with a rigid
EA 956 epoxy used as adhesive.

The results show that favorable trade-offs between the damping
benefit and the associated stiffness penalty can be achieved if the

4 designed-in approach is adopted. This possibility is well reflected in the
test data for specimen 15, although better tradeoffs can be achieved with
improved design configurations.

It should be emphasized that the damping data in Figure 5 are
expressed in terms of the measured loss factor of the joint rat ier than the
material loss factor of the viscoelastic layers. The damping .. aracteristics
of soft joints, like specimen 1, are dominated by those of the adhesive
materials, but as these matork.,ls become stiffer the joint loss factur is
reduced from the damping material loss factor since the viscoe'astic layers
share less of the total strain energy stored in the joint 7 . The stiffnessincrease with frequency, as illustrated in Figure 6, may yield, therefore, a
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LOW AND HIGH TEMPERATURE TESTS

The environmental temperature tests have been performed on all the
specimens listed in Table I at four different temperatures within the range
expected for space structures: -50, 25, 75 and 200"F. These tests have
boon confined to four of the eight frequencies used in the room
temperature tests, namely 0.25, 1.0, 25.0 and 100 Hz.

Only the simplified steady state technique haL coen utilized for the
environmental temperature tests since it is expedient and correlates well

with the other two methods applied in the room tenperature experiments.
The hysteresis-loop approach has been excluded since it is applicable only
for very low frequencies, usually below 0.5 Hz. The sine-pulse propagation
approach is preferable in the case of multiple-branch joints or when

*accurate absolute values of damping in transient phenomena are needed. It
does not require a custom-made, piezoelectric motion transducer as needed
for the simplified steady state method. However, the fact that all the
equipment required for the simplified steady state method was already
available from the room-temperature tests, has facilitated its selection for
low and high temperature tests. In addition, this approach is more closely
related to conventional measurement and interpretation concepts of damping
data and it permits a faster data reduction procedure than the sine pulse
propagation method.

* The simplified steady state method is described in Refs. 4, 5 and 8.
The only difference be tween the experimental set-up of the room
temperature tests and that of the environmental temperature tests is the
placement of the test fixture inside an environmental chamber, as shown in
Fig. 7. This is a BLUE-M LN-270C-1 constant temperature environmental
chamber with mechanical convection horizontal airflow. It uses liquid
nitrogen as the cryogenic agent. Due to the highly corrosive nature of this
cooling medium, the test fixture and the dynamic response pick-ups had to
be made of stainless steel. The chamber can provide a temperature range
from -180"F to 5504F, which has not been fully utilized in these tests in
order to avoid any potential irreversible damage to the joint specimens.

When a harmonic voltage is applied to the piezoelectric exciter, it
generates a small axial harmonic motion which is transmitted through the
test specimen and results in an axial harmonic force measured by the

4..; piezoelectric load cell. If the displacement output of the exciter in unloaded
condition, i.e., with no speciailen attached to it, is expressed as

X (t) = A cos wt (1)

where w is the circular frequency (rad/sec), then the force signal
measured by the load cell is

P(t) = B cos (wt + e) (2)
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where the phase lag * is caused by the viscoelastic behavior of the
test specimen. By using the coeplex stiffness concept of viscoelasticity1 0

the following equations are developed for the rell and imaginary stiffness
components of the specimen4 :

B B2 (3

A

i(K) A A (4)

where:

A I - 2C 1 cos 0 2 82 (5)
A A2

C= 1- L () (6)

In the loaded condition, the displacement amplitude of the exciter
departs from A because its internal stiffness, KI, is not infinite. The actual
axial motion can be determined from the equilibrium condition between the
external reaction force and the internal force generated by the piezoelectric
effect. Its expression is

x'i MLt = P((- + 12+K1 (7)

L K K2 K3

.. ch is derived by assuming that the total external force is the resultant
of throe elastic restoring elements connected in series, namely the specimen,
the load cell and the test fixture whose stiffnesses are K, K2, and K3,
respectively. The equivalent compliance C in the above equations is a
correction term that accounts for the stiffness contributions of the test
fixture, load cell and displacement transducer. It can be neglected when
the stiffness of the specimen is much lower than the combined stiffness of
these elements.

The elastic stiffness of the test specimen is calculated from Eq. (3)
whereas its overall loss factor is given by:

7 Re(8)

The parameters A, B and * are determined from the two harmonic signals
acquired in each test - the input voltage applied to the piezoelectric exciter
and the response of the load cell. These signals are averaged, stored and
analyzed on separate channels of a NICOLET 4094A digital oscilloscope. The
load phase lag o, with respect to the applied displacement, is determined by
the difference between the zero-crossings of the corresponding time waves.

CF-9



After possible DC components are eliminated from the two signals, the
displacement amplitude A and the force amplitude B are calculated by using
the appropriate calibration factor. The sensitivity of the PCB piezoelectric
load cell was about 17 pC/lb, whereas the sensitivity of the piezoelectric
exciter in unloaded condition was about 0.2 p inch/volt. The latter was
measured in preliminary calibration tests at each of the selected test
frequencies and the exact value corresponding to each frequency has been
used in calculating A.8  Since the amplitude of the input voltage to the
motion transducer was Ptbout 300 volts in all tests, its maximum stroke was
about 60 p inch, with the exact value varying slightly from one frequency
to another. 8  A schematic of the data analysis procedure in the simplified
steady state method is shown in Fig. 8.

The primary drawback of the simplified steady state approach utilized
in these experiments is the tedious preliminary calibration tests which are
required for measuring the equivalent compliance C. They include two
different sets of experiments - one in unloaded configuration of the
piezoelectric motion transducer and the other in its loaded configuration. A
reference aluminum specimen whose axial stiffness is 225,000 lb/in is
mounted in the test fixture when the loaded sensitivity of the exciter is
measured. A piezoelectric ENDEVCO accelerometer with high sensitivity
(about 500 pC/g) is used to measure the displacement output of the motion
transducer in the calibration tests. The data analysis for these tests is
performed in the frequency domain by using a HP 5423A Dynamic Analyzer,
as described in detail in Ref. 8.

The equivalent compliance C is calculated from the equation
A 1

C = 1 1 (9)

where Kref is the stiffness of the reference specimen (Kref z 225,000 lb/in
in the present case). Eq. (9) is obtained from Eqs. (3) and (5) by
substituting Re(K) by Kref and assuming that the reference specimen has no
damping, i.e., 0=o. Since repeated measurements of C revealed a yet
unexplained sensitivity to both frequency and temperature, its value has
been determined separately for each combination of frequency and
temperature selected for the tests. These values are shown in Table 2.
For each test, only the corresponding value of C from Table 2 has been
used in the data analysis according to Eqs. (3-6). One may notice that the
stiffness contributions included in the parameter C, Eq. (6), become more
significant as the temperature increases or the frequency decreases. This
behavior can possibly be related to improper mounting and preloading of
the stack of piezoelectric crystals in the motion transducer. However, a
thorough analysis of the exciter is needed before the problem can be
clearly identified and corrected.
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Tablo 2. Equivalent Compliance Values for Test Frequencies and

Temperatures (in/lb x 106).

(Hz)
emp (F) 0.25 1.0 25.0 100.0

- 50 1.84 1.77 0.98 0.69
25 1.97 1.97 1.22 0.91
75 2.53 2.57 1.80 1.45

200 4.49 4.87 3.94 3.79
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RESULTS AND DISCUSSXON

The low and high temperature test results are presented here in the
same format as the room temperature test results in Refs. 5 and 8. Theconventional format of reduced frequency monograms 11 is not necessary in

this case because of the low number of data points. Although the number
of data points is not sufficient to determine exact numerical values over the
whole test temperature and frequency ranges, general trends can be
established. The "best fit" of a given set of data points is obtained, like in
the room temperature tests, by using a least square fitting routine and in
shown as a line in the following figures.

Figures 9-12 show that the damping performance of regular double-lap
joints with EC 2216, SMRD 100 F90, ISD 110 and DYAD 606 viscoelastic
materials respectively, varies strongly with temperature. In most cases the
loss factor peaks at room temperature, approximately, but drops sharply at
low and high temperatures. Such a behavior is expected since the
viscoelastic materials used in the joints are usually designed to perform
best at room temperature. It should be emphasized that, similarly to Fig. 5,
the damping data shown in Figs. 9-12 are expressed in terms of the overall
loss factor of the joint system rather than the material loss factor of its
adhesive. The analytical model described in Ref. 7 provides a uniquely
defined relationship between these two loss factors. Material properties of
the EC 2216 and the GE SMRD viscoelastic adhesives are illustrated in Figs.
13 and 14, respectively. One may notice that the joint damping shown in
Fig. 9 follows the same trends as the corresponding material damping in

7' 7' Fig. 13. A similar conclusion can be drawn by comparing Fig. 10 with Fig.
14.

For all the specimens shown in Figs. 9-12, the loss factor dependence
on frequency is much weaker than its sensitivity to temperature changes.
This observation agrees with Figs. 13 and 14 and with the room temperature
test results, as shown in Fig. 5. At low temperatures, the loss factor tends
to decrease as the frequency increases. At high temperatures, however, the
loss factor increases with frequency. These trends are illustrated in Figs.
15 and 16 for specimens 3 and 9, respectively.

p. Since the design trade-offs between potential damping benefits and the
stiffness penalties associated with them are an important topic of this

research, the stiffness characteristics of specimens 3 and 9 are shown in
Figs. 17 and 18, respectively. If Fig. 17 is analyzed in conjunction with
Fig. 15 and Fig. 18 is analyzed in conjunction with Fig. 16 one may identify
a certain temperature range for each viscoelastic material within which a
favorable trade-off between damping and stiffness may be achieved. Figs.
17 and 18 show a significant stiffness reduction with increasing
temperature, but a much lower sensitivity to frequency changes. The
"relative stiffness" parameter used in these figure is the ratio between the
axial stiffness of the actual joint specimen and that of a continuous
reference specimen whose stiffness if 585,000 lb/in.
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N Two of the viscoelastic materials listed in Table 1 seem to be more
suitable to applications in which good damping performance is required over
a wide iumperature range. One is RTV 630 used in specimen 11 and the
other is a new rubber plastic material manufactured by McDonnell Douglas
Astronautics Company 9 and used in specimen 21. The foregoing conclusion
is based upon the relatively flat behavior displayed by these specimens in
Figs. 19 and 20 over the test temperature range. Smell peaks can still be
observed in the room temperature region.

The effect of the elastic connection elements between the members of
the joint (Fig. 2), upon its overall loss factor can be analyzed by comparing
,:ig. 21 to Fig. 9 for the EC 2216 viscoelastic material, or by comparing Fig.
22 tU. Fig. 12 for the DYAD 606 viscoelastic material. In both cases, as
expected, the elastic links reduce the damping benefit, b% t they also reduce

--* its variations with temperature and frequency changes. rhis is due to the
fact that the influence of the viscoelastic material properties on the overall
properties of the joint is reduced with such a configuration and the
structural interactions among the joint constituents become more
pronounced.

7

A good indication as to the reliability of the test data generated by the
simplified steady state method can be obtained by comparing the results
obtained on certain specimens during the environmental temperature tests
with those measured on the same specimens at the same frequencies during
the room temperature tests. Since the two series of tests have been
performed at a time interval of about one year with no temperature
measurement during the room temperature tests, an approximate agreement
among the results should be considered satisfactory. Such an agreement is
indeed observed by comparing the data measured at 75"F on specimen 3
(compare Fig. 9 with Fig. 5 and Fig. 17 with Fig. 6), specimen I (compare
Fig. 11 with Fig. 5) or specimen 15 (compare Fig. 21 with Fig. 5).
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CONCLUDING REMARKS

Passively damped joints provide a cheap, simple and efficient moans to
enhance the inherent damping in space structures. However, careful
consideration should be given to their design configuration and material
selection in order to achieve favorable trade-offes between the damping
benefit and the associated otiffnoss penalty. Potential penalties that have
not boon analyzed in this rosearch, like strength, weight, and cost must
alio be considorad.

The test results show, in general, that the overall damping and
stiffness characteristics of axially loaded doublo-lap joints are determined
primarily by the material properties of their viscoolastic adhesive layers.
For instance, the temperature variations of the joint properties follow the
same qualitative trends as the corresponding properties of the particular
viscoelastic material used in the joint. Those variations can be reduced by
tailoring the material selection to the temperature range within which the
joint is expected to operate. When it is not possiblo to choose viscoolastic
materials with relatively weak temperature dependence, like RTV 630 or the
rubber plastic alloy of McDonnell- Douglas Co., the use of thermal protection
on the joints may be considered for wide temperature range applications.

The simplified steady state technique provides a reliable
characterization of passively damped joint specimens if sufficient care is
taken in measuring and using the various calibration factors included in its
equations. The accuracy of the test data generated by this method is
extremely sensitive to possible errors in the calibration factors. Since some
of these factors may change not only with the test frequency and
temperature, but also because of slight mounting inconsistencies of the
specimens in the test fixture, the calibration factors should be rechecked
any time a now specimen is mounted in the fixture. The calibration problem
is greatly reduced in the sine-pulse propagation approach, which may be
considered a good alternative to the simplified steady state method when
sufficient time is available for data reduction.
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DYNAMICS OF VISCOELASTIC STRUCTURES

K. J. BUHARIWALA and J. S. HANSEN

Institute for Aerospace Studies
University of Toronto

ABSTRACT

In this paper we present a general method for modeling material damping
in dynamical systems. The work is primarily concerned with a dissipation model
based on viscoelastic assumptions. First, linear constitutive relations are
briefly reviewed. Motion equations are then formulated in operator form for a
structut-e constructed from an anisotropic, viscoelastic material. The mass,
damping and stiffness operators are developed consistently in the formulation.
Basic operator properties are discussed and orthonormality conditions are
derived f'or the viscoelastic system. Modal identities are derived for a
constrained viscoelastic structure. These identities provide criteria which
are useful in order reduction of finite element models. An example of a
viscoelastic beam in pure flexure is illustrated.
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1 Introduction

The analysis of most structural dynamics problems can be undertaken with
considerable confidence owing to the powerful numerical and analytical
techniques currently available. Damping models are, however, usually the
weakest link in a structural dynamics analysis. Hence, the primary objective
of our work is to present a consistent material damping model. A number of
techniques exist for identifying the damping matrix from a given set of
information about the dynamic behavior of the system. For example, Caravani et
al. [1] have outlined a time domain recursive least squares technique to
identify the general damping matrix. Similarly, Yun and Shinozuka [2] describe
a nonlinear Kalman filtering technique for the problem. Another method as
given by Caravani and Thompson [3] of characterizing systems with L
nonproportional damping is to work in the frequency domain. The drawback of
identifying the system damping matrix from a given set of information about the
dynamic behavior of the system is that the damping matrix is not known at the
design stage. Also, alterations in the parameters of the system require a
remeasurement of the dynamic behavior to identify the damping matrix for the
altered system. Of course, identifying the damping matrix by measuring the
dynamic response may be impractical for some structures such as large flexible
space structures. The present approach to the problem is to construct a
consistent damping matrix, without any knowlwdge of the dynamic behavior of the N
system.

The underlying assumption in deriving the motion equation is that the
stress-strain and the strain-displacment relations behave linearly.
Otherwise, the material damping model is quite general and can be applied for
any material with an arbitrary degree of anisotropy. The dynamics of an
arbitrary structure is studied by formulating the motion equation using an
operator notation.

A consistent damping model is developed using a linear viscoelastic
constitutive relation. In Section Two, we briefly review various forms of
viscoelastic stress-strain relations. We then use one specific form in Section
Three to develop the motion equation. The assumption of linearity permits us
to formulate the eigenproblem by taking the Laplace transform. Orthonormality
conditions are the topic of discussion of Secton Five: first, the elastic
problem is reviewed; the remainder of the section is devoted to the
orthonormality conditions of the viscoelastic problem. The previous results
are the basis for the derivation of modal identities; these provide a useful
guide for establishing a hierarchy of the the system modes. Finally, the
general results are illustrated in a cantilevered viscoleastic beam problem.

2 Some Aspects of Linear viscoelasticity

Structural models based on purely elastic constitutive relations cannot
account for energy dissipation. For a comprehensive development, we require
constitutive relations which allow the time rate of change of energy to be
negative. This condition is met by viscoelastic constitutive relations. Here,
a brief review of viscoelastic stress-strain relations is presented.

The standard viscoelastic model for a uniaxial constitutive relation as
suggested by Bland and Lee [4] is

CG-2
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r-o d-O r=O qd (1)
rNO d t r rdtr

where Pr and q are material constants. A generalization of tis form iS to
use fractional derivatives in the constitutive relation, as suggested by Caputo

po~)+n~ Dron)1 Pr (2))poo(t) + Pr= r(,(t) qoE(t) +r11 qr D t ()

where the fractional derivative operator of real order a is defined by

D :x(t)] I d ft x d o < . < 1 (3)" T:') Br 0o (t_ C)a

Constitutive relation (2) is a generalization of the standard model (1) in the
sense that the order of the derivatives are no longer limited to the set of
positive integers.

The major drawback to the above forms is that they are not readily
amenable to analysis, since many terms may be required to describe a
material adequately. Before use, the model requires experimental
determination of material constants Prand qr, and fractional orders 0rr and
Pr"

An equivalent form for viscoelastic constitutive relations of an
anisotropic material can be given in terms of the Boltzmann hereditary
superposition integral where the stress depends on the entire strain
history:

S3 kl t CIl
ij(t) = o  Cij(_r) d d-d i,j = 1,2,3 (4)

k,l=l

Here the usual tensor notation followed by Sokolnikoff (6] is used. The
tensor quantities refer to a dextral 9 thogonal set of Cartesian axes
(xl,x 2 ,x3), r is the position vector, C* which are functions of rand t,
are termed tIe relaxation moduli and c. are the components of the stress
tensor acting on a face whose normal poliits in the "i" direction and which
acts in the "j" direction, Fig. 1.
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It is assumed that the stress and strain vanish for t < 0. This
restriction may be removed by a translation of variable t or using (-W) as
the 1oxer limit of integration in (4). From the symmetric nature of aij and
cij the symmetry properties

cj~kl - klis

can be deduced. Biot (7] has shown that when Onsager's reciprocity
relations apply, the relaxation moduli satisfy

Ckl(r,t) = Ci(r't) (6)

Hence the relaxation moduli are completely symmetric (symmetric in all four
indices), like the moduli of elastic media.

In addition, the time dependence of the relaxation moduli is taken as a
series of exponentials (Staverman and Schwarzl (8))

Cki n Ckl(s)()e /P s kl (7)
Cj(_rt) r + (r) (7

s=1

which is the harbinger of the more general relation to follow. The exponential
series in (7) implies that the stress-strain relation can be represented by an
array of springs and dashpots (7]. In (7), Ps are the material relaxation
(decay) constants and all fourth order tensors on the right hand side are
independent of t, completely symmetric, real and are positive-semidefinite.

The problem of determining a possibly large number of moduli Ckl and
relaxation constants p5 in (7) still remains when using the Bolt?2mann
superposition integral (4) to describe a viscoelastic material. To overcome
this dilemma, Biot (9] considered an almost continuous distribution of
relaxation constants. Hence the discrete relaxation constants are treated in
the form of a continuous relaxation density distribution function y(O).
Therefore, the viscoelastic constitutive relation takes the form

(t.t)3 (Gkl (r,t- ) + Ci(r)] !ckl dr (8)0 k,l=l d (8
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where G are completely symmetric and positive-semidefinite and Ckl(*) is a
function 'bf r and 0 = 1/p. The summation in (7) is replaced by an integral in
(9), and i Fso doing we account for the possibility of Cj(r,0) being a
discontinuous function in 

0.

4It will be convenient in our formulation to separate the elastic term,
hence we integrate the second component (time independent moduli) in (8).
Integrating (8) and taking

Gi - 0 (10)

we recover the linear anisotropic elastic constitutive relation

ij k,l-1

otherwise, for non-vanishing relaxation moduli we have the linear anisotropic
viscoelastic constitutive relation

= 3 kl. kl
M. G. I (r,- )- dc + (12)
(t) k, 13 k,l 1

This relation will be the building block in our development of the motion
equations of a viscoelastic body.

3 Theory

We are now in i. position to formulate the motion equations of a
viscoelastic body. The motion equations for a viscoelastic continuum, Fig. 2,
are developed in operator form; in so doing we apply the principle of virtual
work which can stated as follows:

It is a necessary and sufficient condition for equilibrium of a system if
A4 the total work done by all the external forces plus the work done by all the

15 internal forces is equal to zero for a virtual displacement.

This principle can be generalized to include dynamical systems by
appealing to d'Alembert's principle. Hence, the principle of virtual work can

CG-5
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be stated as

3 3

fV 6u 'i dV Iy i C 0 j 6 -11 + u 1j &)dV (13)

where fj are the components of the externally applied force vector

f.T fI () f2(C) f 3(r.) ] (14)

taken as force per unit volume; Pi are the components of the momentum vector

P T pi(_r) p2(r) p3(r) (15)

and are defined as

Pi - P(rL)i (16)

atL (17)

where p(r) Is the material density of the viscoelastic continuum, taken to be
time-independent, but in general nonuniform. The linear strain tensor is

.. cij =i (ui, j +uj,i) (8

where ui are components of tL~e displacement vector

u [ uI(r,t) u2(r,t) u3(r,t) ] (19)

We have used 6ui in (13) to denote the components of virtual displacements in
contrast to the components of real displacements ui.

CG-6



Using (12) and (18) -in (13) gives

3 3 3 3

fVI a dV 1=fV 1 Gk~~t-) k14i

5 u3 rkl
(u + U1  )d- + X u)](k,1 Ulikd' +  l-=liij(r)(Uk,l + UI,k)]"

6(ui J + ujj) + ¢ , )dV (20)

Applying the divergence theorem to th ekvolume integral and making use of the
symmetry properties of moduli GTJ and C1j gives

3. 3 A- ( t Gklt ( _. r t - c)au l k d
tki

14j J,k,l-1 j

Ci(r)ul,k] - f }6u dY = 0 (21)

with the appropriate boundary terms compatible with the boundar conditions
of the problem. Since the components of the virtual displdcements are
arbitrary and independent of one another It follows that

- 6--'. ( jt Gij(r t - r) jl k d +
j,kl=1 7 f I

C (r)Ulk]- = 0 , i=1,2,3 (22)

Therefore in operator form the motion equation can be written as an
0 integro-differential equation

Mu+ ft (rt--) - d- + K u = f (23)

where the operators are identified as follows:

CG-7
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P(.)6t (24)

3

K - { kl 1

% ktl I a C kl (26)% .1=rk [ J 'Yj _ I

and the externally applied force vector f and displacement u are defined in
(14) and (19). Here the symbol E Is used to distinguish between the damping
operator derived consistently from the constitutive relation, and the more
commonly used damping operator symbol f or .. It is observwd from (25) and
(26) that the form of the damping and the stiffness operators is the same.
This means that in a spatial discretizatlon procedure such as the flirte
element method, the algorithm for developing the stiffness matrix K and the
damping matrix R(t) is the same. Therefore the extension of a-dynamical
elastic model toa dynamical viscoelastic model is relatively simple, and if a
computer code for a particular elastic structure already exists, it needs to be
modified only slightly to account for viscoelastic effects.

From (25) it is observed that the damping operator R, is time dependent,
unlike the mass and stiffness operators. In addition, the functional
relationship is such that the damping operator tends to zero as time increases
arbitrarily; this is in keeping with the fading memory property, that is

t

The response u at time t, as obtained from the integro-differential eqn.
(23) is dependent Fn the entire history of the response up to time t, and can
be determined uniquely in conjunction with the initial conditions

u(O) = Uo and _6(O) = Vo (28)

For the undamped problem when

0 (29)
.IJ

the damping operator vanishes,

* . CG-8



R Eo (30)

as expected and we obtain the standard undamped differential motion equation

M 0o +K uO = r (31)

Here superscript (.)0 is used to differentiate between the elastic and
viscoelastic representation.

4 Properties of Operators

The mass, damping and stiffness operators satisfy certain properties.
From (24)-(26), we have the self-adjoint properties with respect to space, (but
not with respect to time),

(.!u 2) - (2u 1) (32)

and the definiteness properties

(U,1u) > 0 (35)

(u,Ru) > 0 (36)

(uKu) > 0 (37)

for any u 0, that is, the mass operator is positive-definite while the
damping a nd stiffness operators are posit't.-semidefinite in general, and the
product . is given by

CG-9
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(u_,,u 2) TI RT u2 dV (38)

5 Eigenproblem

PWe wish to study the free vibration problem; in particular we wish to
analyze the decaying oscillatory motion of a viscoelastic structure in the
absence of external forces after it has undergone a small perturbation from
equilibrium. The response to an arbitrary loading f can then be expanded in
terms of the time independent eigenfunctions. Hence we seek a transformation
in the formulation of the eigenproblem which removes the integro-differential
operator in (23), that is, we wish to transform (23) into

= B (39)

The convolution integral in the motion equations (23) suggests the application
of the Laplace or Fourier transform; either is applicable, but we choose the
Laplace representation.

Taking the Laplace transform (Laplace variable p) of the
integro-differential motion equation (23) yields

2 bu (r, 0)
(p2M + p(r,p) + K)= I + M + pu(r,0)) + u ,(r,O)

(40)

where

- p

Ci1.r, O)y(0) dOG ,. l (42)
0- p + 0

Laplace transformed quantities are denoted by (7).

We shall expand the solution for an arbitrary loading f in terms of the
eigenfunctions u(r) which are space dependent, but indepelndent of initial
conditions. Theiore, we consider the homogeneous counterpart of (40); that
is, free vibration of a viscoelastic structure and zero initial conditions,

CG-lO



0 o, u(r,0) u(r,0) 0 (43)

and obtain the etgenproblem

(P2M + pk(r,p) + K) (44)

In the analysis to follow it is convenient tn work in first order form,

so the eigenproblem (44) is expressed as

pAb + K(p)-. = o (45)

where

A (46)
0 -K

f(p) =I(p) (47)

(PT .2 (48)

Here operators a, K, and and consequently h and are all functions of the
spatial coordinates; however, for simplicity this dependence is not noted
explicitly in (45) - (48). From (46) it is observed that operator h is real,
symmetric and self-adjoint

(_a1,AR2) = (A.,q2) (49)

Also operator a is complex, symmetric and self-adjoint

CG-ll



(RIN2 SA (T q2 (50)

The symmetric nature of i implies

(51)

where H denotes the Hermitlan of the matrix operator, that is, the transpose ofthe complex conjugate (denoted by an overscore). Property (51) followsdirectly from expressions (41), (42), and (47). It is observed that neither

nor 1I exhibits definiteness pioperties.

For the undamped problem, when

0 I-(52)

the eigenproblem becomes

p°Ak.°+ BOR 0 (53)

where the matrix operator 0,0 is symmetric as before but is now real.

0 K';

B0  T=[p0u0 u0 ) (54)

The eigenvalues and eigenfunctions for the undamped problem are denoted by p0
and O Superscript (.)o is used for the undamped elastic eigenproblem to
distinguish it from the damped viscoelastic problem. It is noted that the
matrix operator A defined by (46) does not involve the damping operator !(p),hence the matrix operator ho of the undamped problem is identical to the matrix

operator /, of the damped problem.

CG-129.
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6 Orthonormality Conditions

Before we derive the orthonormality conditions for the eigenfunctions of
the viscoelastic problem, let us first review the classical orthonormality
cppditions for the eigenfunctions of the undamped eigenproblem (53). For the
e" mode we have

pO to + = o = 0 1,2,3,... (55)

From this we observe that eigenvalues pO and elgenfunctions a 0 occur in complex
conjugate pairs. Now performing (q,.) on (55) and using the self-adjoint
properties of A and Vu, we obtain the crthogonality relation

(, )= 0, C p (56)

Also, let us take the normalizing factor AO, given by

(_,q ,) = AO (57)

Then conditions (56) and (57) can then be expressed as

( A = A08 (58)

The eigenfunctions are also orthogonal to V , i.e.,

(,,B0q) -OAO 6  (59)

We now turn to the task of finding the orthogonality conditions for the damped
viscoelastic problem whose eigenproblem is

'p +4 + a = 0, a = 1,2,3,... (60)

where for simplicity and convenience, the notation

CG-13



(p) (61)

Is adopted. From (60) it is observed that the eigenvalues and elgenfunctions
for the damped problem, also, occur in complex conjugate pairs, since from (42)
we have

G ijr.Ep) - 9kl-rp (62)

Applying (Rp,.) to (60), we obtain

Pa+p t) + (qp, M) = 0 (63)

Utilizing, the self-adjoint properties of a and Z (49) and (50), equation (63)
becomes

pa(Atp) + (Ra, .' ) M 0 (64)

Interchanging indices a and p in (63), gives

pp(RaItp) + (qa,.pp) = 0 (65)

and so combining (64) and (65) yields the orthogonality condition

(pa - pp )(,t ) (q,[T - P 0 o, p a * pP

(66)

Hence the eigenfunctions are not orthogonal to A unlike (56) for the undamped
problem. For the normality condition we shall take

CG-14
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(._qco ) =A (67)

pMpP(qp,,) + pp0 p,U.} o6B )

and realizing the symmetric nature of & and %yields

PcPP( c, p) + p P(qci p) - 0 (69)

Interchanging the indices a and P in (68), we obtain

PUpPoncmiinq.(6) pand, ,f( p) - 0 (70)

Upon combining (69) and (70) gives the second orthogonality condition,

Q- p o I ) , p p (71)

Equations (66) and (71) are two orthogonality relations for the
viscoelastic problem. The former relation (66) is important in the derivation
of modal identities which is the subject of discussion of the next section.

7 Modal Identities

It has been a traditional practice of dynamicists to analyze a flexible
structure in terms of its eigenvalues and elgenfunctions. Hughes [10] has
shown that in analysis of elastic structures, the complete set of
eigenfunctions are not needed per se, but, two integrals of the elgenfunctions
PC and Ha, which correspond to the linear and angular momenta of mode a. Once
modal pameters are identified they can be shown to satisfy many identities.
These identities provide a guide for establishing the importance of various
modes, and also provide a numerical check on the completeness of a reduced
(truncated) model. Several ideas put forth by Likins et al. [11] and Hughes
and Skelton [12] are available for mode selection and the ones that rely solely
on the structural dynamics are those that depend on the eigenvalues Pat and
modal coefficients Pat and Ha.

We now extend Hughes' results for a constrained viscoelastic structure as
shown in Fig. 3. It is constrained at point 0 to eliminate rigid body motion.
First, we shall find an expansion of the inverse of the mass, damping and I
stiffness operators in terms of the eigenmodes. The identities for the modal
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coefficients P. and _hare then established using the expansion of (t.- 1, K712

The constraint condition mAkes the stiffness operator positive-
definite, thus the inverse of operator 4, (eqn. (46)) exists. Expanding A:-I in
terms of its elgenfunctions,

A-1  m (72)

where the notation for the product .)(. is defined explicitly by

A-IX k Z c,,q,(_q,x) (73)
a, pxl

and c p are unknown coefficients to be determined. Now for (72) to be a valid
expansion, NI must satisfy the eigenproblem

+ A'1_, = 0 (74)

Thus substituting (72) in the above equation and using (63) gives

P a - I cp(qp, y)qa = 0 y = 1, 2, ... (75)

For a constrained structure

py * 0 , y = 1, 2, 3, ... (76)

and since g, are eigenfunctions, from (75) we obtain

3  = 6, a,y = 1,2,3,... (77)
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or in matrix form we can write

C 0 - .1 (78)

where the elements of the matrices are identified as follows:

C cp (79)

_.(ap,Aqy) (80)

1 m6 (81)

Equation (78) is sufficient to solve for the unknown coefficients cg provided
D is non-singular. It should be noted that matrix D as defined in S0) is not
diagonal since the eigenfunctions of a viscoelhstic structure are not
orthogonal to A as is evident from (66). This is unlike the elastic problem
where the orthogonality condition (58) makes 0 diagonal.

Three more expansions from 4 1 can be obtained. For this we, first,
rewrite q in terms of u using (48). The expansion for a-t then becomes

A-1  pg)(_( (82)

Also from (46) we have M- 0:o
A-1 = 0(83)

Operator K is invertible since the structure is constrained. So comparing the
two expressions for A- (82) and (83), we obtain
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H- 1 CaI PePa)(2p (84)

K7 - caoua)(u (85)

o c pu%) (. (86)
OZa,fl

The above expressions can be used to establish identities in terms of the
modal coefficients which are Identified as follows. First, consider the
reaction force and torque at the constrained point 0 of the viscoelastic body,
Fig. 3,

-R(t) - fVx(£,t)dV (87)

TR(t )  fV rxy(r,t)dV (88)

where

-Y Ku = f - M u - ft R(r,t- ) d (89)

0 (89

and (.)x is the skew-symmetric 3x3 matrix associated with the cross product.
The displacement function under our assumption of linearity can be taken to be
separable in the spatial coordinates and the variable t. So

u(r,t) = a (r)va(t) (90)

where u(r) and va(t) are in general complex. The reaction force and torque
can then be written as

FR(t) = -FE(t) + . v + ft R (t- ) dv d-) (91)

a 1 _- d
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- Va + -A da d ) (92)

where

4 (t) -f V L(rE,t)dV (93)

T (t) - tv,'xf(-E,t) dV  (94)

fV p(r) u.(r)dV

(pI,U_) (95)

H~ fv p(r)rX. ,(r)dV

Rt aV R

(Rua) (97)

Ra(t) f fV rXR(r,t)u_(r)dV

.(Rx,u) (98)

The constants P and H, are termed the modal momentum and modal angular

momentum coeff{ cents sInce the momentum and angular momentum of the

viscoelastic body are P 1 W and I H ; respectively. Coefficients R,(t)

and Q,(t) are identified as the time dependent modal linear and angular
coefficients associated with the damping operator 1,.
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The modal identities can now be set up in terms of the modal
coefficients. Using (24) e have

P. , _ .1) M m1 (99)

where m is the total mass of the viscoelastic body. If the expansion for -

as given by (84) is used we obtain
p.J

(pl_,W- Ppl_) -(= I RD

Cc 01-- T (100)

Comparison of expressions (99) and (100) yields the matrix identity

c.pP P T = m I (101)

It should be noted that the double sum in (101) is real since the coefficients
c e, the eigenvalues, the elgenfunctions and thus the modal coefficients all
appear in complex conjugate pairs.

Similarly, two more identities involving the expansion for W.- can be
, jestablished. These are

Tc pp H H = J (102)
a,P3=I ap  F-P -

Ca~PHPT =c X (103)
a (, F=i --

where c and J are first and second moments of inertia respectively,
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- _ M- IP!_) (104)

J - (prx, r-p r) (105)

Proceeding in the manner outlined above, using the expansion (85) for operator
K-1, we can establish three more identities. For this we require the
flexibility operator, which can be expressed as an integral operator

F[f(r)] - K-1(f(r)] = fv F(r,_ )f(_)dV (106)

where E is symmetric and positive-definite and thus F is symmetric and
positive-definite. Therefore

C P -T VfV p(r)F(r,,)p(,)dVdV (107)
a, p3=1 a:

HT : - Svrv _ w v
_ _X

I a cH T Ff ()E.(r,A) p(&) edVdV (108)
ap=1 _

c aB HP = -VfV p(r)rXF(r,_ )p(_§)dVdV (109)
a,p=1

Using expansion (86) for the null operator, we obtain

p T (110)

- p P H H = 0 (111)
a, p= 1 -
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c (112)a, P13=

This completes the derivation of the modal identities, (101)-(103),
(107)-(109) and (110)-(112). These can be used as a numerical check on the
solution of the eigenproblem or more importantly for mode selection as shown in
[11] and (12]. For completeness a parallel axis theorem for the momentum
coefficients as given by Hughes (10] is incl'jded here. As shown in Fig. 4
consider two reference points, A and B. The locations with respect to A and B
are denoted by rA and EB, and related by

1:A (113)

where vector LAB is the constant locaLion of B with respect to A. Also, we
take

dVA dVB = dV (114)

Modal linear momentum coefficients Pa are independent of the reference point,
while the angular momentum coefficienrs Ha are defined as

HAa " fv x p(_)dV, hja - g P(r)dV (115)

which implies

H ~ rP (116)

This result is particularly useful when adding a flexible body of knowncharacteristics to a structure. Modal coefficients H for the entire structure
can be computed using expression (116), rather ,%an using the primitive
definition, (96).

The modal identities for the elastic (undamged) problem can be shown to
involve only a single sum. The eigenfunctions _q are orthogonal to .as seen
from (58) and so matrix D in (80) becomes

D O  0 0~tO
- (,A~ay)

= AO 6 (117)
P Py

C-22

~~1. *t



and from (78) we obtain

c (11)

So the double sum in the modal identities derived earlier reduces to a single
sum, i.e. (101) becomes

SALO' ~o ~o po poT m 1 (119)

In keeping with the notation used earlier, superscript (.)o is used for all
quantities (normalizing factor AO, eigenvalues pO, and modal coefficient PO) of
the elastic problem. Similarly, the double sum in identities (102)-T03),
(107)-(109), and (110)-(112) reduces to a single sum (cf. Hughes (7J).

8 Example - Cantilevered Viscoelastic Beam

This section illustrates the concepts discussed earlier on a simple
one-dimensional problem; a cantilevered viscoelastic beam in pure flexure, Fig.
5. The stress-strain relation for the one dimensional problem is

a f G(t-s)- ds + Cc

G(t) = oC(*)(O)y(O)e'at do

Using this in the principle of virtual work, in the absence of external forces,
the equation of motion of the viscoelastic beam is

p + I( J G(t-)2 d + C w''') = 0 (121)

where p is the material mass/length and I is the second moment of the

cross-sectional area. To formulate the eigenproblem, we first take the Laplace
transform. This gives

p2 p w + I(p (p) + C2 P + pw(O)) + GW()
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(*) (122)
.(P f C( *)(O)Y( O) dO(12

(P) f0LLp +

The corresponding elgenproblem becomes

p2p + (p {p) + C) (123)

and the elgenmades $j are obtained from the differential equation

tol p j 0, Ot z separation constant

91124)

and satisfy the orthonormality condition,

f1 O1(x).(x)dx 1 (125)

The ei'introdes which satisfy (124) and (125) are

--x- ii2[(cos zjx - cosh z jx) - cr(sin zjx - sinh zjx)] (126)

where

4

Zt 10 -a- (127)

cos cj + cosh cj (128)
i =s sin cj + sinh ci

rj are the roots of the transcendental equation

cosh Ej cos Cj + 1 = 0 (129)

and the integro-differential equation for the modal coordinate, fj is
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w(jt)+ f 0(i130)

w(x,t) (132)
J = 1 1()f t 

12

The reaction force and torque at the fixed end of the beam can be obtainel
from

FR(t) = (P. f. + CI z4 p gj(t) (133)

TR(t) (H fj + CI z H. gj(t)) (134)
Jul) ' J11 t

Here the damping force (= CI , zj' Pj gj(t)) is a linear combination of the

momentum coefficients Pi. Using3'.26) the modal momentum coefficients as given
by (95) and (96) for the beam become

P1 = P flo .(x)dx

0(l 1/ i

= 2-/ (135)

Hi p fl x4i (x)dx

2(pl3)1/2 (16

1

The non-dimensionalized modal coefficients are shown in Figure 6. The modal
parameters Pi and 41 are seen to decrease monotonically with mode number i,
with H1 's decreasing faster than P1 's. Therefore, identities involving
parameter H, covetage faster than the ones involving Pi. This result was shown
by Hughes [1i] for tha same elastic problem, i.e. G(t) 0.
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9 Closing Remarks

In this paper a general d) tmical model for material damping based on .v
viscoelastic assumptions is introdL.ed. As observed from the flowchart for the
viscoelastic model depicted in Figure 7, the motion equations are no longer
differential, but rather tntegro-differential in nature. All operators (mass,
damping and stiffness) are completely defined and arise consistently in the
formulation.

The eigenproblem is formulated by taking the Laplace transform of the
equation of motion. The eigenmodes are shown to satisfy orthogonality
conditions and these conditions have been obtained for the elastic and
viscoelastic problem. The eigenproblem for this class of problem is
non-standard and cannot be solved numerically by standard algorithms. It is

. demonstrated, however, that the eigenproblem can be solved using a perturbation
analysis. The accuracy of the numerical solution of the eigenproblem can be
checked by the modal identities derived in this paper.

The only aspect remaining to be determined is the viscous moduli and
decay distribution function y 0). The viscous moduli can be determined from a
creep test as shown by SmithL 14] for an orthotropic graphite reinforced epoxy.
As for the decay distribution function y(O), one approach of determining it
could involve correlating the analytical and experimental response
(displacement) for a simple structure, such as a beam. Once the distribution
is established, a consistent damping study can be incorporated in a dynamical
model at the design stage.

In closing, the work can be summarized by the following remarks:

1) A damping operator is formulated, consistent with viscoelastic

stress-strain relations.

2) The eigenproblem cannot be solved numerically by standard algorithms.

3) Modal coefficients for a viscoelastic problem satisfy certain identities.
The identities can be used as a guide in modal reduction as shown by Hughes
and Skelton [12].

4) Viscous moduli and distribution function y(0) need to be established for
different materials.
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ABSTRACT

Damping requirements estimated by the designers of active control

systems for typical large structures deployed in orbit are

compared with what might be expected to be available inherently in

such structures. An attempt is made to draw on the best published

experience from both tests made in space and modal decay

measurements involving components, aircraft and other systems

supported on the ground. With defined exceptions, it is concluded

that in the majority of cases the available passive damping will

meet or exceed the needs. Therefore, special provisions for

augmenting energy dissipation will not be useful unless they offer

a clear advantage, in cost, weight or simplicity.
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INTRODUCTION

The objectivep, of this paper is simple: to advance t..A claim that
the modal damping naturally available in most larga ctructures
deployed in space will be more than adequate to pe.%it the
successful oLosign of active control systems, without the use of
special measures to augment passive energy dissipation. It is
hoped to stimulate discussion and thoughtful re lacrion by this
rather controversial conclusion.

Ones assumption must be clearly stated at the outt, because it
. ', represents a limitation on the classes and the pucposes of space

systems to which this study applies. It is assumed that space
itself and the operations conducted therein constitute a
relatively benign dynamic environment. Ruled out are such things
as very rapid slewing maneuvers of large platforms or reflectors.1 ' The docking of Shuttle orbiters and other orbital transfer
vehicles must be confined to "soft landings", as was the case with

Apollo. Impulsive inputs such as impact by a large meteoroid are
regarded as accidents rather than normal design conditions.

In summary, damping as a means of reducing the severity of very

large responses is not included here. The emphasis is on the
stability and effective performance of the controlled spacecraft.
Furthermore, non-linearitios cannot be so prominent as to negate
the use of normal mode superposition as a moans of representing
dynamic behavior, (It is remarked that this appears to be the
preferred approach to LSS control system analysis as can ba seen,
for example, by reference to the majority of papers at the latest
Blacksburg Symposiuml.)

The program of the paper is to compare statements by informed
specialists about what is needed against bast estimates, derived
from tests reported in the literature, of what will almost
certainly be present. Th. critical damping ratio for free
motion in a "pure" natural mode of vibration is used as the
primary measure of energy - dissipation capability in the
structure or uncontrolled system. When the values are small, say
-SlO02 is close to exactly half the "structural damping
parameter" g or the "loss factor"

Needs of the Control System Designer

It is, of source, impossible to quantify what is required in terms
of a single value of C or even a range not involving powers of 10.
The authors have discussed the issue with several well informed
specialists. The extensive literature has been carefully
examined. About the only broad generalization that one can derive
therefrom is that damping is usually neglected (see e.g. , Hughes
and Skelton 2 ) within the control system bandwidth; with regard to
both stability and performance, this is believed to be a
conservative approximation.
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The general answer to the question "how much V?" clearly depends
on a variety of factors. They include the complexity and
frequency spectrum of the plant being controlled; the bandwidth
itseslf; the numbers and locations of sensors and actuators; the
controllability and observability of all significant modes; and
finally the specifications which arc oo be met. It is Prima focie
that the designer must be provided with an adequate model in terms
of oigonvaluos and frequency oigenvoctors of the flexible
structure. One observes, however, that past experience indicates
that this last requirement can be fulfilled, so long as the system
development process provides opportunities for periodic updating
and for the ultimate experimental verification of those data.

Lot it be assumed that the designer has the aforementioned
adequate resources to do his job. In particular, measuring
instruments and "effectors" of sufficient performance can be
deployed throughout the structure so that problems can be avoided
due to inadequate frequency ranges, controllability or
observability. Under these circumstances, the authors have found
no lacks of consensus* regarding the following conclusions
suggested by Bryson

3:

For elastic modes with frequencies well withi, the system
bandwidth, any C ;jreater than zero is satisfactory.

Above the system hnndwidth, where such phenomena as "spillover"
instability must be avoided, the range

10- 3 < (10-2 or more) (1)

can be accepted. In general, the higher the (small) values the
easier the design tasks.

It is the criterion of Equation (1) that should be borne in mind
as the data in the next section are studied.

DamninC Likely to be Availnble

The approach taken is to compare the numbers in Equation (1)
against what is believed to be a relevant and carefully-made
selection from the enormous literature on modal damping
measurements. (One need only look to Lazan 4 or to the 102
literature citations in the 1973 review by Graham 5 in order to
appreciate the meaning of "enormous.")

Several, but not all, of the data sets presented are felt to be
representative of the highest experimental precision attained to
date. Although difficult to prove rigorously, this claim of

*For instance, they proved acceptable to Professor P. C. Hughes.
University of Toronto, during discussion at Vibration Damping
Workshop II.
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accuracy is based on personal knowledge and/or scrutizing of the
mothodology and details of error estimates furnished by the
experimenters themselves. Two decimal places --- that is, RHS
errors oi O(±il) --- are felt to constitute a level of accuracy at
the limit or beyond what has been accomplished to date.

The selection begins with a search for lower bounds on V through
the study of measurements in vacuum on simple, monolithic
components. It then proceeds to test data for s:omplete structures
--- first in the orbital environment, whore very few have boon
published, and finally in ground facilities on various aerospace
systems. In the first category, the most p:ociso measurements are
believed to be those of Crawley and collaborators (see Crawley and
Hohr 6 among several references), as well as the thesis 7 ,8 of one
of the present authors. Some values of V front that thesis are
reproduced and discussed hare; there is good agreement between
comparable numbers from the two sources.

Table 1 lists all the specimens employed by Edbor& 7 . The
experimental technique, which was designed both to eliminate "air
damping" and to minimize such other sources of extraneous onerly
dissipation as mechanical supports, is fully described in .

Table 2 and Figures I through 6 present typical results. Host of
the data points actually summarize ton or more individual
experiments. Their precision can be inferred from the vertical
bars, which estimate the ±lo probable errors, and from the extreme
values plotted as diamonds.

Figure 1 shows that, in a range of natural frequencies above the
peak of the so-called "Debye curve" (r=. Zoner 9 or Leel0 A
aluminum free-free beams reproduce quice weaL the predictions 9 1

,

of thermoelastic theory. For composite beams with epoxy matrix
and three types of reinforcements, Figures 2, 3 and 4 show V to be
almost independent of frequency. Various graphite and fiberglass
specimens yielded values in a range 4 to 9x10 "4 . Remarkably the
V's for the Kevlar* - reinforced epoxy beams (Figure 4) turned out
to be five to ten times higher than those for the other two
reinforcements. This difference must be attributed to greater
energy dissipation in the Kevlar. Since the Figure 4 V- values
already meet the test of Equation (1) and this is suitable for
many space applications, one concludes that Kevlar/epoxy
constitutes a very desirable material from the standpoint of the
present study.

Table 2 lists typical results from tests on aluminum and composite
rectangular plates. Since there were no indications of any non-
linear effects of vibration amplitude on these data, it is
observed that the ratios between plate and beam damping for the

aluminum and graphite are unexpectedlyT large. For instance,
thermoelastic theory as developed by Lee predicts a plate-to-

*"Kevlar" is a registered trademark of the DuPont Company.
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beam ratio for metals dependent on Poisson's ratio and gives about
1.8 for aluminum. The same surprising undorprodictions can be
soon for monolithic, rectangular, aluminum trusses in Figures 5
and 6. Indeed, the disagreements implicit in Table 2 and Figures
5 and 6 remain unexplained. They are regarded by the authors as a
challenge to those conducting theoretical research on vibratory
energy dissipation in crystalline solids like metallic alloys.

Table 3 presents the only modal damping ratios from tests on orbit
that could be found in the literature prior to the present
Workshop. For the first out-of-plane bending mode of the 100%-
deployed OAST-l (or SAFE) solar array, Brumfield, Pappa, Miller
and AdamsI actually citoe measurements of V between 3 and 4x10 "2 ,
increasing with amplitude. What is especially significant,
however, is the com arison between these numbers and a pro-flight
estimate of O.5x10"' quoted by Vennari 1 2 at the Workshop.

The paper by Lips and Vigneron1 3 contains the rest of the data in

Tr-blo 3; it was telemetered from orbital tests on the Canadian
communications satellite Hermes. No advance predictions or
indications of experimental error are given for the C-valuos in
Reference 13. It should be noted that the modal frequencies in
the table are quite low compar.ed to most ground test results and
fall in the range estimated for the first generation of LSS. They
suggest that the decrease of damping with increasing scale,
forecast for instance in thn paper by Ashley1 4 , may be too
pessimistic.

The remaining example% are drawn from ground testing. Figure 7 is
reproduced from Chan's article 1 6  (see also Stroudl5 ), which
summarizes an extensive seties of vibration tests conducted on the
Galileo spacecraft in its stowed configuration for launch to earth
orbit. Altogorhor nine combinations of excitations and data-
reduction procedures were employed in this program. As indicated,
three of these are represented on the figure. Only nine of the
approximately 25 modes for which vs. frequency are plotted are
ideatifitd by Chen 1 6 as "global" in the sense that they have
primary significance for the design of active controls. Described
as "chaotic" in Reference 16, these damping ratios are difficult
to characterize in terms of accuracy or of which method of
excitation should be considered most reliable. They are shown
here mainly as an indication of the levels to be expected on
multi-component spacecraft. Observe that, if C is averaged
between the three values givon for each mode, none is found to be
less than 5x10 "3 and the majority exceed 10-2 significantly. Thus
the criterion of Equation (1) is certainly met.

Figure 8 is taken from Jensen 17 as an example .f full-scale
measurements made in 1977-1978 on the Space Shuttle. These -
values are from the complete stack, in the launch configuration
("begin stage 1") and in a lighter condition corresponding to
burnout of the solid rocket boosters. Three of the points on
Figure 8 fall below tko "control system design value" of

- 5x10 3  The average up to a frequency of AO rad/sec. is
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calculated to be 1.7x10 2 . This may be compared with averages1 7

of 2.lxlO "2 for the orbiter/external tank combination and 3.2x10"2

for the orbiter alone.

Commenting about Jenson's results, one observes, on the one hand,
that many of the - values he presents are higher than what would
probably be encountered in vacuum because of the combined effects
of "air damping" and energy dissipation in the supports. On the
other hand, substantial aerodynamic damping is available during
boost to augment what is provided by the stack structure.
Furthermore, no difficulties have been reported involving either
the stability or performance of the Space Shuttle active controls.

Table 4 is from DilValentin 1 8 and summarizes damping ratios from
low-frequency modal measurements on the large wind turbine WTS-4,
built by Hamilton Standard Uivision and operating at Modicine Bow,
WY. These data were obtained during natural excitation by
atmospheric turbulence and are believed to be as accurate as ary
published for such machines. The fiberglass rotor blade is
supported so as to tooter freely at its center, so that the
symmetric modes (Sl, S2) have effectively cantilever root boundary
conditions whereas Al and A2 relate to a free-free beam pinned at
its midpoint. The tower is of welded steel construction, and
relatively little energy can be dissipated at joints either in it
or in the blade. The blade is subjected to some "air damping".
Nevertheless, one sees that all the observed fall well above the
range of Equation (1).

Two samples are reproduced from the extensive literature of ground
vibration tests on aircraft. In the late 1960's AGARD (NATC
Advisory Group for Aerospace Research and Development) sponsored a
very thorough program on the Lockheed F-104G, measurements being
carried out independently in France by a group from O.N.E.R.A. and
in Federal Republic of Germany of D.F.V.L.R. specialists. All
results are summarized in a supplement by KUssner 19 to Vol. VI of
the AGARD Manual on Aeroelasticity. Frequencies and damping
ratios, in a range from the fundamental up to 100 flz, were
obteined by both organizations using variants of the sine-dwell
techniquel°,1 9. There is far from close agruement between the
reported sets of c's, but because of thc extreme care taken in
analyzing modal decays by the German Group their data are believed
to be representative of the greatest accuracy obtained to date in
aircraft tests of this type.

Figure 9 plots vs. modal frequency all of the damping ratios
reported by the Germans on F-104G. The scatter of these points
is, by no means, an indication of probable errors. Rather it
reflects the fact that wide variations in from mode to mode are
to be expected in complicated structure. One comment must be made
regarding the very low apparent damping ratios in two
antisymmetrical modes at around 56 and 68 Hz. Both of these modes
are concentrated in the empennage and include considerable rudder
rotation. Because the hydraulic system, which powers the rudder
and other control surface actuators, was active during these
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tests, it is believed that this external energy source caused
those r's (and perhaps some others) to be lower than what would
have boon obtained on a wholly passive structure. If this
hypothesis is accepted, then Figure 9 can be said to bear out a
phenomenon observed by the authors on other aircraft as well:
that damping ratios tend generally to increase as one proceeds up
the frequency scale.

Table 5 lists similar data for the first three modes of the ring
of the DO-24TT, an experimental amphibian built by Dornier. The
source is a paper by Artmann2 0  at a recent symposium on
aeroelasticity. lie indicates that, as in the case of Figure 9,
those were very careful measurements. Again one sees that the
criterion of Equation (1) is satisfied and that V tends to
inrease with increasing frequency.

The final example chosen for presentation involves not a complete,
built-up structural system but rather a large component typical of
what the members of a LSS will look like. The LSS/IGTV
measurements described by Tollison and Waites21 wore made on a 45-
ft. "Astromast" truss, supported as a cantilever at its upper end
and hanging free at the lower. TesLs were made with an without an
x-shaped "cruciform" frame attached at the bottom; this added a
large rotary inertia whose main influence was to lower the
torsional frequencies. Table 6 summarizes all data 21  that
included reported - values. Except for fundamental bending and
three of the four torsion modes, these results also exceed the
10-2 limit of Equation (1). It is difficult to account for the [
- increase in first torsion, which is associated with the large
cruciform appendage. Second torsion, however, behaves just as one
might anticipate from augmenting the kinetic and potential
energies of the vibration while making no change in the capacity
for energy dissipation.

CONCLUDING REMARKS

What one hopes is an unbiased selection has been offered from the
literature on measured modal damping ratios of aerospace systems
and components. Careful examination of these data is believed to
support the initially - stated conclusion that, for the majority
of large structures deployed in space, the naturally available

damping will be enough to ensure the stability and acceptable
performance of the controlled spdce vehicle.
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Table I
Typical Specimens (tested by Edberg7)

Type # Plies h (in) it, (in) i (in)

2024-T3 Beam -- 30.9 1.807 .092,1
2024-T3 Beam -- 23.9 1.865 .1222
2024-T3 Plate -- 23.9 16.0 .090

Fiberglass/Epoxy Beam 6 2S.1 1.728 .075
Fiberglass/Epoxy Beam 12 24.9 1.939 .148
Fiberglass/Epoxy Beam 24 24.8 1.942 .296

Graphite/Epoxy Beam 10 25.0 2.007 .073
Graphitc/Epoxy Beam 20 24.9 1.729 .161
Graphite/Epoxy Beam 40 24.9 1.230 .277
Graphite/Epoxy Plate 20 23.9 16.0 .036

Kevlar/Epoxy Beam 12 25.0 1.750 .072
Keviar/Epoxy Beam 24 24.95 1.747 .148
Kevlar/Epoxy Beam 48 25.0 1.257 .290
Kevlar/Epoxy Plate 24 23.9 24.0 .090

Aluminum Truss 22 bay 54.3 2.61 .375
Aluminum Truss 5 bay 49.5 10.10 .375

Table 2

Critical Damping Ratios of Plates7

Material I ,.,t l-

2024-T3 Aluminum 3.56 x 10- 3  3.95

Graphite/Epoxy (0-900) 5.03 x 10- 3  9.3

Kevlar/Epoxy (0-90.) 7.32 x 10- 3 1.69
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Table 3

Measurements On Orbit

System Source f (Hz)

OAST-1 (SAFE) Brumfield 0.037 , 3.3x 10- 2

on STS 41-D et all

Higher Modes N/A (Nonlin.)

HERMES Lips & 0.13 8.0 - 9.0x10"2

Vigneron" 0.15 3.0 - 3.8
0.30 3.0 - 3.0
0.44 1.5 - 2.2
0.50 0.7 - 0.8
0.82 1.2 - 1.6

Table 4

WTS-4 Wind Turbine" ' (D = 256 ft)

Mode f (Hz)

Blade Flatwise (Si) 1.0 3.9 x 10- 2

Blade Flatwise ( Alj 1.4 1.9
Blade Flatwise (S2) 2.4 3.2
Blade Flatwise (A2) 3.6 3.5

Tower 2nd Longitudinal 1.9 1.2
Tower 2nd Lateral 2.1 2.8
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Table 5

DO-24TT Amphibian Wing Vibration Data?'

Mode I (HIz) f

Ist Bending 6.104 0.82 x 10-

2nd Bending 9.090 1.64 x 10- 2

1st Torsion 15.46 2.05 x 10- 1

Table 6

LSS/GTV (45 ft Suspended Truss) 21

Mode Without Cruciform With Cruciform

I (Hz) f (Hiz)

Ist Bending (x 0.1,14 0.35x10- '  N/A N/A
2nd Bending x 1.33 1.33 136 1.9x10 - 32nd Bending y 1.83 1.88 1.83 1.9

3rd Bending x 3.38 1.76 3.24 1.7
3rd Bending y 3.90 2.20 3.74 2.0
4th Bending x 8.06 2.90 6.36 1.1
4th Bending y 8.13 4.50 6.67 1.85

Ist Torsion 0.991 0.44 0.377 0.56
2nd Torsion 9.6 1.1 3.02 0.34
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INVESTIGATION OF PASSIVE DAMPImG OF LAME
SPACE TRUSS STRUCTURES

by

Dr. John M. Hedgepeth

Dr. Mehran Mobrem
Astro Aerospace Corporation

Carpinteria, California

ABST

The purpose of this paper is to investigate several passive damping
design concepts for large space truss structures. The concepts include
damping in both the truss members and joints of space truss structures. The
effect of local vibration of the individual truss members on the overall space
truss response has been investigated. It has been concluded that the local
vibration acts a3 a source of added damping for the overall response. The
efficiency oA segmented constrained viscoelastic layers on truss members and
the effects of tuned dampers are also studied.
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IWVSTIGATIOW OF PASSIVE DAMPING or LARGE
SPACE TRUSS STRUCTURES

CATBOORY: PASSIVE DAMPING CONCEPTS

by

Dr. John M. Hedgepeth

Dr. Mehran Mobrem

INTRODUCTION

Thbe augmentation of passive damping in large space structures is an

attractive approach to improving the dynamic behavior of such structures.

Some of the envisioned missions involve combinations of large size, high

precision, and rapid slewing thai will demand orders of magnitude better

performarsce than available today. Managing these demands without a structural

damping (g) of one percent or greater will severely complicate the problems of

active control of these structures.

Not only must the damping be appreciable, but also it must be linear and

operative for small structural distortions involving microinch/inch strain

levels. Therefore, such seemingly attractive approaches as impact absorbers

and nonlinear joints are not available for the solution of the damping

problem. Furthermore, the allowable distortions are so small that adding

flexible, highly-damped links in the structural load path (a favored approach

in the past) is unacceptable.

The present study deals with d3mping augmentation approaches which do not

add structural flexibility and which do not depend on large strains or
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nonlinearity for their effectiveness. The type of structure considered is the

open truss structure consisting of slender tubular struts of metal or

composite, attached with high stiffness, linear joints located at the truss

nodes The interfaces to payloads, propulsion units, and other parts of the

spacecraft are assumed to be at the joints. The primary deformation of the

struts is therefore axial straining; any local bending would have little

affect on the distortions of the nodal points.

The first approach discussed involves the use of segmented constraint

layers to produce efficient shear straining of a high-damping elastomeric

layer on the struts. The next is to add tuned vibration dampers at the nodes.

Finally, the use of the lateral vibration of the struts themselves as the

tuned dampers is evaluated.

SBMM OIONSTRAM LAMM

High-damping materials tend to exhibit relatively low stiffness. The

constraint layer approach has been used for some time to introduce shear

strains into a trapped elastomeric layer. By making the olastomeric layer

thin, the strains and, hence, the damping stresses, can be magnified. This

technique was applied first to the damping of acoustic vibration in panels.

The mismatch in strain between the panel and constraint layer that occurs with

sonic waves can be duplicated for the uniform y stressed strut by segmenting

the constraint layer.

Consider the segment shown in Figure 1. Let the lengthwise coordinate x

be measured from the center of the segment. Let u0 and uI be the lengthwise

displacements of the constraint layer and the structural wall, respectively.

The shear strain in the elastomer is

Y0u 0 - u l'uy = (1)
t f

See Figure 1 for the definition .f dimensions.
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The equilibrium equations of the constraint and structural layers are

42 u0

u G Y (2)
0 dx2

2

Et - - -G Y
1 dx 2

where Et0 and Etl are the extensional stiffness of the outer layers and Gf is

the complex shear modulus of the elastomer.

Assume the structural wall is loaded cyclically with an amplitude at

x u *b/2 of *clb/2 so that the average lengthwise Atrain is c1 . The solution

resulting in

Et0  sinh

1 cosh 2'-)-(3
1 + tnh

where the (complex) boundary layer width T is given in Figure 1.

The combined stiffness of the constrained strut of length b is

Et0

1 Et Et0  2 T tanh(
1 Et I  b k2T

'A Note that the effective damping ratio and stiffness ratio are

geff Re Et (5)

Re Et
ReFEt

1

As is indicated in Figure 1, for small values of b, the values of geff

and R approach zero and one, respectively. For large values of b, the value

of geff again tends to zero, but the stiffness tends to the sum of the
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stiffnesses of the strut and its constraint layer. For each set of

properties, there is an optimum segment length for which geff is a maximum.

The results of calculating for optimum length segments are shown in

Figure 2. Here the damping achieved with various thicknesses of the

constraint layer is shown. It is seen that significant damping can be

obtained (three percent, for example) with only moderate increases in weight

(ten percent). Also shown are results obtained when only 20 percent of the

length of the strut is treated. Note that the more effective method is to

treat the entire length of strut.

This approach shows great promise and should be investigated further.

One potential problem is the need to avoid wide variations in elastomer

properties in service so that the boundary layer width does not stray too far

away from its design value. Perhaps the breadth of performance could be

increased by using different segment lengths in different portions of the

truss.

An experimental verification of this approach has been performed by S. S.

Sattinger. This careful work is reported in Reference 1, which was unknown to

the authors before the Workshop.

To DAMPERS

A well-used approach for vibration absorption is to use tuned dynamic

dampers. Such dampers are efficient at their natural frequencies but are not

very useful at other frequencies.

In order to evaluate the effect of such dampers on the response of truss

stress to dynamic excitation, the idealized structure shown in Figure 3 was

analyzed. This Li a uniform beam on which tuned mass-spring oscillators are

mounted. They are assumed to be so closely spaced as to be considered

continuously distr.ibuted along the beam. The bea.n is simply supported a

foundation that is vibrated vertically at a constant amplitude. Attention is

directed to the amplitude response at the center of the beam.

Let y be the displacement of the beam and YD that of the sprung masses.

The governing equations arc

iv(1 + ig) Ely + (l + igD) k (y - yD) + m y - 0 (6)

MD YD ( igD) k 'YD y) = 0
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where El and k are the beam and spring stiffness, respectively, m and MD are

the mass per unit length of the beam and damper, respectively, and g and gD

are their (structural) damping coefficients.

The boundary conditions at x - 0 and x - L, where L is the length, are

Y YO ~ Cos wt (7)

ThN y" u, 0

where yo ic the foundation displacement amplitude.

The solution of these equations for the beam displacement is

L sinh X+ sinh X()
YO 2 --inh X (8)

sin ~ sin- X
+ si k L I -J L

2 sinA

where

X W4 2 i (
(1 + ig) W1

L (1 + 'gD) WD

in which

2 E
Z() * T _4 

(10)

is the first natural frequency of the base beam and

DB- 8

,iaj

+ +~



D = k

is the freqaency of the damper.

The vibration response factor at the center of the bean is

C 1 - + -I(12)
YO 2 cosh X C

Extensive calculations were made for the response factor for varying

values of forcing frequency, natural frequencies and damping. The c 1puter

program used for this calculation (written in C language) is given in the

Appendix. As could be expected, the peak responses obtained as the forcing

frequency was varied occurred at the coupled natural frequencies for which the

undamped values of X were odd integral multiples of '. See Equation (9). The

resulting peak values are shown in Figure 3 for a damping ratio of 0.01 (for

booh the beam and the damper) and a mass ratio of 0.1.

The curves show the responses of two mdal branches foc each odd integer

value of n, coalescing at the natural frequency and then trading roles. The

reduction in response is a factor of about two at the notch for each set of

modal pairs. This amount of reduction is not very useful in practice.

The influence of change damper mass and damping ratio is shown in

Figure 4. In this case, attention is concentrated on the first mode. It can

be seen that increasing the mass of the damper broadens the range of

effectiveness but does not Improve the maximum reduction. On the other hand,

increzising the damping fa-tor of the vibration absorber to 0.1 has a strong

beneficial effect, reducing the &esponse by an order of magnitude (at optimum)

tor beam damping g of 0.01, and by two orders of magnitude for a g of 0.001.

Single-frequency vibration absorbers are not very useful for most space

applications in which a large range of frecuencies must be managed. One

possible approach would be to usa dampers of differing frequency at various

points in the structure. Some attention is paid to such an approach in the

next section.
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Another approach would be to Ise multimode vibration dampers. Some

insight into the effectiveness of this method is obtained by analyzing the

idealized structure shown in Figure 5. Here the vibration dampers mounted to

the simply supported beams are, themselves, simply supported beams. By

appropriately tuning the fundamental frequency of the damper beams,

effectiveness can be obtained over a wide range of frequencies.

The analysis of this structure follows the same approach as the previous

one. It is necessary only to replace the definition of X, Equation (9), by

41 + tan) + tanh ID(13)

(I + ig) W 2XD22

where

.4 if44 2(1 )D (1+ ig) 1

and AD is now the fundamental natural frequency of the damper beams.

Results calculated with the computer program DAMCON.C given in the

Appendix are shown in Figure 5. Since a closed-form solution for the resonant

frequencies was not available, it was necssary to perform extensive frequency

sweeps. The curve shows the response of the base beam with g - 0.01. The

symbols show the peak responses for a particular design in which mD/m - 0.1

and fD/fl = 1.05. ResUlts are given for gD w 0.01 and 0.1.

The effectiveness of the multimode follows the same trends as obtained

with the single-mode damper except that rll the modes are benefited. Here

again, the results for gD - 0.01 arI not very good, but increasing the damping

of the absorbers to 0.1 yields major r)nductions.

r
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DI*PIG CAUSED BY ILAL STRUT VIBRAION~

The effect of local vibration of the individual struts on the overall

truss structuze respons6 is analyzed by a finite element method using COSHOS7

software.

The ertergy needed to excite the local bending vibrations of the struts

results in the reduction of applied energy to excite the primary mode of the
truss structure. The reduction in the applied energy is more effective when

the applied load frequency is in the vicinity of struts' local bending natural

frequencies.

The cantilever planar truss structure presented in Figre 6 has been

selected for the analysis.

it is customary to model the struts of a truss structure by "truss

elements" in which only axial deformations are considered, Ite use of such

truss elements results in an error in the dynamic response of the truss

structure since the local bending response of struts is neglected. The error

is small if the local strut ben-ling frequency is much higher than that of the

truss structure. As the overall natural frequency approaches the local

natural frequency, tht error increases.

A more accurate modeling is achieved by the use of beam elements which

are capable of bending, as well as axial, deformation. For the present

analysis, additicnal nodes were place at the center of the struts. Also, a

standard beam element of the COSMI%)7 library with the lumped mass option was

selacted for the analysis.

The response qn(t) of the truss structure at structural node n is

m

qnt) - (rnr M15)

r=l

where

T

r t) - (16)

r %2W r + ig

F(t) is the applied load; wr is the rth natural frequencyl * is the rth
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mode sh5ape; g is the structural damping, and m is the number of vibrational

modes sased in the analysis.

Ti the case of modal damping, Cr, Equation (16) is changed to

TF(t)
nr r (17)o lr(t) 2

W'r +- ) + i

The frel.iency response of the truss structure at its free end ha, been

computed, subject to a harmonic base excitation, for two different cases. In

one case, t.te bending stiffness EI of struts is purposely increased by 2.5

orders of magnitude, Wiich results in a truss structure with struts exhibiting

axial deformati:n only. For the other case, the actual bending stiffness of

struts is u3ed.

Ln the analysis, the modal damping of Cr n 0.005, which corresponds to

the structural d.mpinq of g = 0.01 in the vicinity of natural frequencies, has

been used

Presented in Figure 7 is the truss structure tip response factor in the

y-Qirection for the frequency range of zero to 48 Hz. There are eight primary

-odes corresponding to the structure with stiff struts. For the structure

width flexible struts, the number of modes increase to 40 in the above

frequency range. The primary mode shapes and some of the local modes are

presented in Figures 8 to 18.

The local strut vibration mode has reduced the tip structure response by

26 percent, and 48 percent corresponding to sixth and seventh modes,

respectively. The response corresponding to the eighth primary mode is no

longer present.

DB-16

.1Y A



00J

0.

CD 0

a --

~~C1 CJL7

jcQ@

CD)

C a

- I.. 17



%0

4-N

5- C

V)C) =3 q*

4.-

XII 4-I

a - a)4

S z

, ,#a pP UV

a a I I a 0
a I' I a * a ~ G

a S1

a'

at a a.

DBa18



cO

!I
co

-) NN

:33 I- 4
L4- -

-r-. :

Ch S- C)v

I S S % ifl4--

L) 4 V 4-

-i a)

S I S - I0.

- SI % I S.-

CL

- -E i

,1 5 I L "

S I S 1 I
' I '

I Is

I S S SD-1
a ' %

S * I S %
% S % S

* I S

I I
I I

S I

I I

4 DB-19



CYI

0

NN

9'- 4-
x XII 4-I

LL4-3

M 4A

a a)

aS S I
I a

U-..

DB-20

- :If-:pa



o

-4-) N

4- N\

";'( 1) 00
.w

p.- 4-wco,

) 0

P._

-=-t

*4 I
S-0

AII

' DB-21

-- - - - - -- --"



0

CD
co

4-N N

S- .

4-
x II 4- II(1 or-

I- 4 J-
LL. 4-V)4

B' 0)
4.

% % t

II %% %

* II 0.

II %

I

B ' u/s 4..i

do... I,/I
DB- 2i 2.1

m •I I--B

B I
- V

a Ir..
B %.B

I I

II I

- J

DB-2

-BL- - - . . . . . -B- , . .; . " 2 . . . . .I- " - . " , . .



hi

QV)

r-
'-

Xi

LL4-

.40

'0

.44

DB-2

v tlw Wr.?. -2



noo
4- N

S.-
4-3 LO

U- 4

s-

XIIm

DB-2



0
0'~*

0.,

U, N
4-)N

U,

0

wo-~
rC~4 ~C\J
-o

4--

)<II 4-U
ci)

U'

a I 
1~ 

ci

a a aI an

a ~

a a 4.

a 4.
I I

EI*1man
cjan

a S I

* I a I In 4J

a a a * * Ida
a a ~L a-)

I- -- -
i-i.fl

a S
a I
I I

I 
afl

4. I

-
p~--- J

a a' I 0)

* 
' a L

- I 
* ~ a

S a
* I

U-

a S a
a -

a a 'I4.

a a / S
* a a a
I I a I
* a I, I

-- 
--

a gI I
a I

I.' a a a - I
I 

I

a I 'I

a a 7
S 

I

~. 1f 
I 

I ~
14. 

I

a I'
I

* S S

a ~ a S I

S a a
a a a a

*---d

a a I

a a s

nIP 
a a

'P 
a a a
I a I

j.* ':

PA DB-25

-I

!l .J
J



94-

-4-
L,- 4 4-

IA. 41

Li~4-

DB-26.

a X4



(-,

* '.
co~

(I) N

S- (A

54-

-- 1
Q) r

LL. 4- L/

E0J

r-

W 4

".#.n

DB-27

I, I E



4.-

'.0-

-Q-

4-

LL. 4- V

% %

*IA
*1 0

a. J

I L . .

41)4

DB-28



CONCLUSIONS

The theoretical results obtained in this study indicate that:

* - Passive damping can be augmented without reducing stiffness.

* - Segmented constraint layers can yield 3% damping with 10% increased
2 mass.

- Need high damping material with constant properties.

- External dampers most effective at their resonant frequency.

- Multi-resonant dampers would enable broad coverage.

- Local strut vibration modes can double the effective damping ratio
of truss modes.

The work should be extended. In particalar, "area" truss structures

should be investigated.
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,4 DAMPBEAM.C - Calculate the dynamic response of a simply supported
damped beam with dynami.: dampers continuously distributed
along its length.

jmh 2/20/86 '1
/* Note: void cxarthixy ,yn)

double x(,y[(],zC;
int n;

is a Wiley Scientific Subroutine Library Function which performs
arithmetic operations on complex numbers each stored as a two
element array. The integer n specifies what operation to make
on *x and *y to result in *z:

n = I *Z = X + *9
2n *z*x -*
S*z =*x times *y

4 *z *x/ey* */

#include "math.h"

double tanhocosho,sinho;
main()
C

double zeta[2],temp(2],den[2J,num[2),g,g1,damp[2J,quo[2],msignb,c,nrat,
dampl[2],omega,omega s,omegal,omega_u,epsfourth,coeff magphase;

int i,j,n;
char chr;

m 0.I1;

g = 0.01;

puts("\nDetermine Frequency Response for a damped ");
puts("simply supported beam. jmh 2/20/86\n");

while() C
chr = 0;
while(chr '= 'Y') C

printf("\nParameters are: Mass ratio = f, g = f, gi = 7f\n",m,g,gl);
printf("\nAre these OK? ");
if((chr = toupper(getcharo)) != 'Y') C

printf("\nEnter new values separated by commas ?");
scanf ("7.1f , 711i1f, \n"I, &9 &91&)

J)
damp(0J = I.;
dampCI] = g;

dampl[C] = I.;
dampI 1] = g1;

while(chr == 'Y'" C
printf("\n\nEnter values of omegas and limits on omega ?");
scanf("Xif, Zlf,I7.f\n",&omea s,&omea 1, &omegau);
if(omega-s ( 0) break;

eps = (omegau - omega_l)/20;
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porintf('\n\n\tFrequency\tResponie\tPhase\t\t orne'a s = 7.\n\n",Omecas);

oriegas *= omegas;

forUi=O,sign=I; i<=20; i++)C
omega =omega~j + i'eps;
omega *omega;

if(eps<=O) (
sign *= -1;
n =i/2;
nrat 2*n+1;
nrat *nrat;

nrat *=nrat;
b = (1.+m)*(omtga-s + nrat)/2.;
c= (1.+m)*omtgas*nrat;

omega = b + sign~sqrt~b*b-c);

num[l:O = omega/omegas;
num[1J=0;

cxarth(nurm,dampltemp,fl;

denCO) = 1 - temp(03;
dtnCIJ -tempCIJ;

~ 'ItemptO] 1.;
ternp~lJ a0;

cxarth(temp,den,num,4);

numCOIJ pi*pi*pi*pi*omqiga/(1+m)/16.*(1. + m'nuem(OJ);
numCIJ pi*pi*pi*pi*omega/(1+m)/16.*m*numtl).

cxarth(num, damp, temp1 4);

cxsqrt(temp,num);
cxsqrt(num,temp);

dcf lect(ttmp, zeta);

nag = sqrt((zetaCOJ*zetaCO3 + zeta11J*zetaCIJ));
phase 180./pi~atan2(zetaClJ,zetaCOJ);

printf("\t7.f\t7.f\tYf\n M,sqrt(orega),mag,phas,);

printf("Continut?");
chr toupper(gttcharo);

.xsqrtcz,w)
double z[],wCJ;

double r,thet;

r = sqrt(sqrt(zCOJ*z(0) + zClJ*z(1J));
if(z(0j == ' C

if(zCl) 0) thet =pi/4.;
else thet =-pi/4.; DB-33



else thet = -5*atanC(1/z(0J);

tu[0J = r*cos(thet);
wC1J = r*sin(thet);

deflect(alfa,,z)
double alfaC],.ztJ;
c

double x(2],qj(2J,tempC23;

x(0J = 1.,
XttJ =0;

cxcosh (aIf a,y-
cxarth(x,y,-,,4)-;

UhO = - alfa~iJ;.
alfaC13 alface);
alface( = EW

cxcosh Calfa,u);
cxarth~x,y,temp,4);

z(0J z (z[03 + tempCe13)/2.j
zClJ = (ZCl] + ttmptlJ)/2.;

double cosh~x)
double x;

return Nx + .x/;

double sinh~x)
dou~le x;

*55 c
x =exp~x);
return (x - .x/;

double tanh(x)
double xi

return sinh~x)/coshCx);

cxcosh(ziw)

double zCJwCJ;

wCO coshC(0o)*Cos(zC13);
wC1J sinh(z(0J)*sin(zCl));
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,t. QAPO. - Calculat th dynamic response of a simply~ supportod
damped beam with simnplyj supported damper beams continuo:usly~
distributed along its length.

jmh 21/26/8/)
"include "math.h"
doable tanho,cosho,sinho;
rnain()

double zetaC2J,temp[2J,de-n(2J,numC(21,g,gI,dampC2,quo2J',ni,sign,b,C,nrat,
damp 1C23,omegajomtqa..sjomeqa..,omeg u,eps,fourth,coeff,mag,phase;

int i,.In;
chap chr;

.4 gI 0.91i

puts("\nDetermine Frequencyj Response for a dampid ");
puts('simply supported beam. jmh 2/20/86\nu);

wuhile() C
& chr = 0

while(chr '= 'Y')C
printf(O\narametors are: Mass ratio x 7.f, g = V, gI 7.f\nN,m,g,q1);
printf("\n~re those OIK? ");
if((chr = toupper(q~tcharo)) !- 'Y') C

printf("\nEnter new values separated by commas ?");

Jarnp(0] I.;
damp(1J = g

daiapl(0J =1.;
damDlIJI = gi;

while(schr == 'Y')C
printf('\n\nEnter values of omgas and limits on omega ?");

scanf(N7.lf,7.lf, 7.lf\n" ,&omegas,&omvgvj ],&omega.u);
if(omega~s < 0) break;

eps z (omtgau - .omgajl)/20;

printf("\n\n\tFrequencg\tResponse\tPhaso\t\t omtgas 7.f\n\n",omeqas);

omegas *= one ga_$;

for(i=0,sign=I; i<-20; i++)C
Omega =omea)l + i*eps;
omega *omega;

* mf(eps<=0) C
sign '= -1;
n = 1/2;
nrat 2*n+l;
nrat nrat;

-~ neat nrat;
b (1.+m)*(omega .s + nrat)/2.;
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omeja =b + signesqrpt(b*b-c);

numEW = pj*pi#pi~pi*Qioega/OMC1.1s/16.i
num[1iJ4;
cxarth(num, dampI, temp1 4);

cxsqrt(temp, num);
cxsqrt(nuun~temp);

eff-mass(tempsnum):

nun(l] pipi*pi*pi*oiitga/(1+m)/16.*(1. + m~ntm([');

cxarth(num,damp~temp,4);,

cxsqrt(tempinum);
cxsqrt(num, temp);

deflect(temp, zeta);

mag m sqrt((z~tafE3zeta1O3 + z~ta1*zttaU3));
phase = 1S@./pi~atan2(zttaC1Jz.t0JCO);

printf("\t7.f\t7.\t7.f\nl,sqrt(omega),magiphase)I

prirntf( "Continue?");
chr -toupper(getcharo)i

c':sqrtUz,w)
double z[3,w[J;

double r~thet;

r =sqrt(sqrt(zE$J*z(0] + z(1J*z(1]));
if( z(0 = 0) C

if(z(13 )= 0) thet =pi/4.;

m~l= r*sin(thtt);

double ilf&Cl,z[3;

double xC23,y[2J,temp[2J;

V10 I.;

cxcosh(alfa,yj);
rCxarth(x~y,z,4);
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ailfaC4J= 03

cxc05b(alfa, u);

EW=(Z(OJ + tempCJ/2.;
ZE13J (zCl] + terp~lJ)/2.;

doubit alfaCJ,meff(3
c

double 9C2J,teimpr231

4if(alfa03-0 SM alfaCO-u0) C

95 mtff[13 a 01
* return;

cxarth(q,alf.ismeff,4);

alfati] alfaCOJ;

cxtanh(alfa,y);
cxarth(V,alfa, temp,4.';

meffEOJ = (meiff(0I + ttmpCD)/2.1
mefftlJ = Caeff(IJ + teraplJ)/2.;

double cosh(x)
double x;

x exp(x);
return (x + I.Ix)/2.;

double sinh(x)
double x;
c

xz exp(x);
return (x - .x/;

double tanh(x)
double x;

return sinh(x)/cosh(x);

aU.S, COVEMEW PINMlCOmnCI 14'~
c xc osh Cz, w)
doijble z(JwCJ;DB3
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